WHAT'S IN A NAME? Evaluating Statistical Attacks on Personal Knowledge Questions

Joseph Bonneau

jcb82@cl.cam.ac.uk

Mike Just Greg Matthews

Computer Laboratory

FINANCIAL CRYPTOGRAPHY AND DATA SECURITY 2010

TENERIFE, SPAIN

JANUARY 26, 2010

Joseph Bonneau (University of Cambridge)

What's in a Name?

How "secure" are personal knowledge questions against guessing?

Authenticating Humans

Pros

- Cost
- Memorability?

Cons

- Privacy
- Security

Text Passwords

- 2 Delegation
- Personal Knowledge Questions

Trends:

- OpenID may make delegation preferred method
- Large webmail providers becoming the root of trust

In the News

- Paris Hilton T-Mobile Sidekick, 2005-02-20
- Sarah Palin Yahoo! email, 2008-09-16
- Twitter corporate Google Docs, 2009-07-16

In the News

dozilla Firefox Edit Vew Helory Bookmarks	Yahoot Tools Help					212
				A 1 199		
	http://ichannel.com/index.ph	3/1010118A/P991146b75ct246a7	8 +44++b7/c5930022++bd2+61%ba27	WideD40cbcae67cb60ct6a 🎲 🔹 🔀	nleq "	
🍸 • 🖉 • 🔤 👻 🕂 Search W	wb 🔹 🚺 🔹 🧷 Choose B	Jtone 🔄 Hal 🔹 🌀 Ny 1	ahool * 🚺 Bookrearks * 🍈	Your Own Button 1 🔹 📮 Answers 🔹	🚰 Sign Out	
/b/ · Randon 💿 📄 Alask	a Governor Sarah 🔄 💈	pain husband elope = G	NB Classies Alan Colness	🔹 📄 http://ct93909317 🔯	St /b/-Random	
Aail Contacts Cale	endar Notepad		W	at's New? - Mobile Mail -	dail Options 💌	Go
Check Mail Compose	ſ			Search Mail		
Guidene Man Compose					Search the We	:b
	-					_
Free phones	Inbox					
at AT&T	View Al Message	s 💌 Go	Mes	sages 1-100 of 174 First	Previous I Net	ct I Las
olders [Add - Edit]	view. Milmessage	5 <u>8</u> 00				
Inbox (84)	Delete Sp	m Mark as Unrea	d 👻 Go Move	🖌 Go		
Drafts	# From		Subject		Date 7	Size
Sent		count-services-us	Your Yahoo! passwo	rd was changed	4:23 AM	5KB
Spam (9) [Empty]		061@mms.dobson.	LOOK AT TRIGUUI		12:36 AM	52KB
Trash [Empty]	Amy McC		HI SARAH		Sun. 9/14/08	4KB
	Inv Free		Delivered: Re:		Sat. 9/13/08	3KB
ty Folders [Hide]	Ivy Frye		Delivered: Re:		Sat. 9/13/08	3KB
Emails for Arc	I how Envel		Delivered: Re		Sat. 9/13/08	3KB
	Candy Su	inderland	Welcome Home!		Wed, 9/10/08	17KB
earch Shortcuts	🔲 ° Juanita		Re: Hello!		Mon, 9/8/08	3KB
My Photos	Fabidron	Staol.com g	P Fwd: Fw: A story you	will never read anywhere else	Mon, 9/8/08	20KB
My Attachments	Remus		Read: Hello!		Mon, 9/8/08	3KB
	JD & Tris	h	cousin jason		Sat, 9/6/08	6KB
ADVERTISEMENT	Amy McC	orkell	Read: Hello!		Fri, 9/5/08	зкв
FREE* Dinner for	🗆 - Juanita		Read: Hello!		Fri, 9/5/08	3KB
fun at						

- Paris Hilton T-Mobile Sidekick, 2005-02-20
- Sarah Palin Yahoo! email, 2008-09-16
- Twitter corporate Google Docs, 2009-07-16

In the News

- Paris Hilton T-Mobile Sidekick, 2005-02-20
- Sarah Palin Yahoo! email, 2008-09-16
- Twitter corporate Google Docs, 2009-07-16

Targeted Attacker

- Attack a **specific** *i*
- Real-world identity of *i* is known
- Per-target research possible

- Web search
 - Used in Hilton, Palin compromises
- Public records
 - Griffith et. al: 30% of individual's mother's maiden names found via marriage, birth records
- Social engineering
- Dumpster diving, burglary
- Acquaintance attacks
 - $\bullet\,$ Schecter et. al: \sim 25% of questions guessed by friends, family

Trawling Attacker

- Attack **all** $i \in I$ from a large set I
- Real-world identities are **unknown**
- Population-wide statistics

Blind attack

- Don't understand *i* or *q*
- CAPTCHA-ised protocols or user-written questions
 - "What do I want to do?"

Statistical attack

- Understand q but not i
- Guess most likely answers
- Thought to be used in Twitter compromise

Which is "harder" to guess:

- Surname of randomly chosen Internet user
- Randomly chosen 4-digit PIN

- Answer X is drawn from a finite, known distribution \mathcal{X}
- $|\mathcal{X}| = N$
- $P(X = x_i) = p_i$ for each possible answer x_i
- \mathcal{X} is monotonically decreasing: $p_1 \ge p_2 \ge \cdots \ge p_N$

Goal: guess *X* using as few queries "is $X = x_i$?" as possible.

$$H_1(\mathcal{X}) = -\sum_{i=1}^N p_i \lg p_i$$

- *H*₁(surname) = **16.2 bits**
- *H*₁(PIN) = **13.3 bits**

Meaning: Expected number of queries "Is X ∈ S?" for arbitrary subsets S ⊆ X needed to guess X. (Source-Coding Theorem)

$$H_1(\mathcal{X}) = -\sum_{i=1}^N p_i \lg p_i$$

- *H*₁(surname) = **16.2 bits**
- *H*₁(PIN) = **13.3 bits**
- Meaning: Expected number of queries "Is X ∈ S?" for arbitrary subsets S ⊆ X needed to guess X. (Source-Coding Theorem)

$$G(\mathcal{X}) = E\left[\#_{ ext{guesses}}(X \stackrel{R}{\leftarrow} \mathcal{X})
ight] = \sum_{i=1}^{N} p_i \cdot i$$

- $G(surname) \approx$ **137000 guesses**
- $G(PIN) \approx$ 5000 guesses
- Meaning: Expected number of queries "Is $X = x_i$?" for i = 1, 2, ..., N (optimal sequential guessing)

The Trouble with Guessing

•
$$\mathcal{U}_{16} - N = 16, \, p_1 = p_2 = \cdots = p_{16} = \frac{1}{16}$$

- $H_1(U_{16}) = 4$ bits
- *G*(*U*₁₆) = **8.5 guesses**

The Trouble with Guessing

•
$$\mathcal{X}_{65} - N = 65, p_1 = \frac{1}{2}, p_2 = \cdots = p_{65} = \frac{1}{128}$$

- $H_1(\mathcal{X}_{65}) = 4$ bits
- *G*(*X*₆₅) = **17.25** guesses

The Trouble with Guessing

- $H_1(\mathcal{X}_{65}) = H_1(\mathcal{U}_{16})$
- $G(X_{65}) > G(U_{16})$
- Adversary can guess $X \stackrel{\mathsf{R}}{\leftarrow} \mathcal{X}_{65}$ in 1 try half the time!

_

Suppose Eve wants to guess any k out of m 4-digit PINS

PIN #1	PIN #2	PIN #3	 PIN #m
0000	0000	0000	 0000
0001	0001	0001	 0001
0002	0002	0002	 0002
9998	9998	9998	 9998
9999	9999	9999	 9999

_

Suppose Eve wants to guess any k out of m 4-digit PINS

PIN #1	PIN #2	PIN #3	 PIN #m
0000	0000	0000	 0000
0001	0001	0001	 0001
0002	0002	0002	 0002
9998	9998	9998	 9998
9999	9999	9999	 9999

_

Suppose Eve wants to guess any k out of m 4-digit PINS

PIN #1	PIN #2	PIN #3	 PIN #m
0000	0000	0000	 0000
0001	0001	0001	 0001
0002	0002	0002	 0002
9998	9998	9998	 9998
9999	9999	9999	 9999

Suppose Eve wants to guess any k out of m 4-digit PINS

PIN #1	PIN #2	PIN #3	 PIN # <i>m</i>
0000	0000	0000	 0000
0001	0001	0001	 0001
0002	0002	0002	 0002
9998	9998	9998	 9998
9999	9999	9999	 9999

Any order of guessing is equivalent.

Suppose Mallory wants to guess any *k* out of *m* surnames

Name #1	Name #2	Name #3	 Name # <i>m</i>
Smith	Smith	Smith	 Smith
Jones	Jones	Jones	 Jones
Johnson	Johnson	Johnson	 Johnson
Ytterock	Ytterock	Ytterock	 Ytterock
Zdrzynski	Zdrzynski	Zdrzynski	 Zdrzynski

Suppose Mallory wants to guess any *k* out of *m* surnames

Name #1	Name #2	Name #3	 Name # <i>m</i>
Smith	Smith	Smith	 Smith
Jones	Jones	Jones	 Jones
Johnson	Johnson	Johnson	 Johnson
Ytterock	Ytterock	Ytterock	 Ytterock
Zdrzynski	Zdrzynski	Zdrzynski	 Zdrzynski

Suppose Mallory wants to guess any *k* out of *m* surnames

Name #1	Name #2	Name #3	 Name # <i>m</i>
Smith	Smith	Smith	 Smith
Jones	Jones	Jones	 Jones
Johnson	Johnson	Johnson	 Johnson
Ytterock	Ytterock	Ytterock	 Ytterock
Zdrzynski	Zdrzynski	Zdrzynski	 Zdrzynski

Obvious optimal strategy

Given 100 accounts:

- PIN: 50% chance of success after 5000 guesses
- Surname: 50% chance of success after 168 guesses

Marginal Guessing

• Neither H₁ nor G model an adversary who can give up

Marginal Guesswork Give up after reaching probability α of success:

$$\mu_{\alpha}(\mathcal{X}) = \min\left\{ j \in [1, N] \left| \sum_{i=1}^{j} p_i \ge \alpha \right\} \right\}$$

• Marginal Success Rate Give up after *β* guesses:

$$\lambda_{\beta}(\mathcal{X}) = \sum_{i=1}^{\beta} p_i$$

Marginal Guessing

- Neither H₁ nor G model an adversary who can give up
- Marginal Guesswork
 Give up after reaching probability α of success:

$$\mu_{\alpha}(\mathcal{X}) = \min\left\{ j \in [1, N] \middle| \sum_{i=1}^{j} p_i \ge \alpha \right\}$$

• Marginal Success Rate Give up after *β* guesses:

$$\lambda_{\beta}(\mathcal{X}) = \sum_{i=1}^{\beta} p_i$$

Marginal Guessing

- Neither H₁ nor G model an adversary who can give up
- Marginal Guesswork Give up after reaching probability α of success:

$$\mu_{\alpha}(\mathcal{X}) = \min\left\{ j \in [1, N] \middle| \sum_{i=1}^{j} p_i \ge \alpha \right\}$$

Marginal Success Rate
 Give up after β guesses:

$$\lambda_{eta}(\mathcal{X}) = \sum_{i=1}^{eta} p_i$$

• H_1 , G, μ_{α} , λ_{β} all have different units

- To convert $G(\mathcal{X})$ to bits
 - Find discrete uniform U_N with $G(U_N) = G(X)$
 - 2 "Effective key length" $\tilde{G}(\mathcal{X}) = \lg N$

• In general:

$$\tilde{G}(\mathcal{X}) = \lg[2 \cdot G(\mathcal{X}) - 1]$$

• Similarly:

$$\tilde{\mu}_{\alpha}(\mathcal{X}) = \lg \left(\frac{\mu_{\alpha}(\mathcal{X})}{\alpha} \right) \qquad \qquad \tilde{\lambda}_{\beta}(\mathcal{X}) = \lg \left(\frac{\beta}{\lambda_{\beta}(\mathcal{X})} \right)$$

- H_1 , G, μ_{α} , λ_{β} all have different units
- To convert $G(\mathcal{X})$ to bits
 - **1** Find discrete uniform U_N with $G(U_N) = G(\mathcal{X})$
 - 2 "Effective key length" $\tilde{G}(\mathcal{X}) = \lg N$

• In general:

$$\tilde{G}(\mathcal{X}) = \lg[2 \cdot G(\mathcal{X}) - 1]$$

• Similarly:

$$\tilde{\mu}_{\alpha}(\mathcal{X}) = \lg\left(\frac{\mu_{\alpha}(\mathcal{X})}{\alpha}\right)$$
 $\tilde{\lambda}_{\beta}(\mathcal{X}) = \lg\left(\frac{\beta}{\lambda_{\beta}(\mathcal{X})}\right)$

• H_1 , G, μ_{α} , λ_{β} all have different units

• To convert $G(\mathcal{X})$ to bits

1 Find discrete uniform U_N with $G(U_N) = G(\mathcal{X})$

2 "Effective key length" $\tilde{G}(\mathcal{X}) = \lg N$

• In general:

$$ilde{G}(\mathcal{X}) = \text{lg}[2 \cdot G(\mathcal{X}) - 1]$$

• Similarly:

$$\tilde{\mu}_{\alpha}(\mathcal{X}) = \lg\left(\frac{\mu_{\alpha}(\mathcal{X})}{\alpha}\right)$$
 $\tilde{\lambda}_{\beta}(\mathcal{X}) = \lg\left(\frac{\beta}{\lambda_{\beta}(\mathcal{X})}\right)$

• H_1 , G, μ_{α} , λ_{β} all have different units

• To convert $G(\mathcal{X})$ to bits

1 Find discrete uniform U_N with $G(U_N) = G(\mathcal{X})$

2 "Effective key length" $\tilde{G}(\mathcal{X}) = \lg N$

• In general:

$$ilde{G}(\mathcal{X}) = \text{lg}[2 \cdot G(\mathcal{X}) - 1]$$

• Similarly:

$$ilde{\mu}_{lpha}(\mathcal{X}) = \mathsf{lg}\left(rac{\mu_{lpha}(\mathcal{X})}{lpha}
ight)$$

$$ilde{\lambda}_{eta}(\mathcal{X}) = \mathsf{lg}\left(rac{eta}{\lambda_{eta}(\mathcal{X})}
ight)$$

Conversion to Bits

• H_1 , G, μ_{α} , λ_{β} all have different units

• To convert $G(\mathcal{X})$ to bits

1 Find discrete uniform U_N with $G(U_N) = G(\mathcal{X})$

2 "Effective key length" $\tilde{G}(\mathcal{X}) = \lg N$

• In general:

$$ilde{G}(\mathcal{X}) = \text{lg}[2 \cdot G(\mathcal{X}) - 1]$$

• Similarly:

$$\tilde{\mu}_{\alpha}(\mathcal{X}) = \lg\left(\frac{\mu_{\alpha}(\mathcal{X})}{\alpha}\right)$$
 $\overline{\tilde{\lambda}_{\beta}(\mathcal{X})} = \lg\left(\frac{\beta}{\lambda_{\beta}(\mathcal{X})}\right)$

• Nice property: $\tilde{\lambda}_1$ is the min-entropy H_{∞}

The Complete View

Joseph Bonneau (University of Cambridge)

The Complete View

The Complete View

Joseph Bonneau (University of Cambridge)

Theorem (adapted from Pliam)

Given any m > 0, $\beta > 0$ and $0 < \alpha < 1$, there exists a distribution \mathcal{X} such that $\tilde{\mu}_{\alpha}(\mathcal{X}) < H_1(\mathcal{X}) - m$ and $\tilde{\lambda}_{\beta}(\mathcal{X}) < H_1(\mathcal{X}) - m$.

Theorem (adapted from Boztaş)

Given any m > 0, $\beta > 0$ and $0 < \alpha < 1$, there exists a distribution \mathcal{X} such that $\tilde{\mu}_{\alpha}(\mathcal{X}) < \tilde{G}(\mathcal{X}) - m$ and $\tilde{\lambda}_{\beta}(\mathcal{X}) < \tilde{G}(\mathcal{X}) - m$.

Theorem (new)

Given any m > 0, $\alpha_1 > 0$, and $\alpha_2 > 0$ with $0 < \alpha_1 < \alpha_2 < 1$, there exists a distribution \mathcal{X} such that $\tilde{\mu}_{\alpha_1}(\mathcal{X}) < \tilde{\mu}_{\alpha_1}(\mathcal{X}) - m$.

Application to Personal Knowledge Questions

- λ₃ models the usual cutoff of 3 guesses
- $\lambda_1 = H_{\infty}$ models an attacker with infinite accounts
- $\mu_{\frac{1}{2}}$ is reasonable for offline attacks

Common Answer Categories

Category	Example Questions
Forename	What is your grandfather's first name? What is your father's middle name?
Surname	What is your mother's maiden name? Who was your favourite school teacher?
Pet Name	What was your first pet's name?
Place	In what city were you born? Where did you go for your honeymoon? What is the name of your high school?
Other	What was your grandfather's occupation? What is your favourite movie?

Just and Aspinall: 70% of answers are proper names

- 25% surname
- 10% forename
- 15% pet name
- 20% place name
- Most others are trivially insecure
 - What is my favourite colour?
 - What is the worst day of the week?

- Collected name data from published government sources
 - Most census statistics suppress uncommon names
 - Doesn't impact $\tilde{\mu}_{\alpha}$, $\tilde{\lambda}_{\beta}$
 - Can still get lower bounds on H_1 , \tilde{G}
- Crawled Facebook for 65 M full names

Source	H_0	H_1	Ĝ	H_2	$\tilde{\mu}_{\frac{1}{2}}$	$\tilde{\lambda}_3$	H_∞	<i>x</i> ₁
UK City	9.2	8.5	8.8	5.9	8.7	4.4	3.0	London
Pet Name	15.8	11.7	13.1	9.2	9.4	6.5	6.4	Lucky
UK High School	8.7	8.5	8.2	8.3	8.0	7.4	7.3	Holyrood
Forename	20.6	12.4	15.7	9.9	9.8	7.4	7.3	David
Surname	21.5	16.2	18.1	12.1	13.7	8.1	7.7	Smith
Full Name	25.1	24.0	24.4	20.8	23.3	14.4	14.4	Maria Gonzalez

Source	H_0	H_1	Ĝ	H_2	$\tilde{\mu}_{\frac{1}{2}}$	$\tilde{\lambda}_3$	H_{∞}	<i>x</i> ₁
South Korea	7.5	4.6	4.5	3.5	3.3	2.7	2.2	Kim
Chile	6.8	6.6	6.3	6.3	6.0	4.9	4.5	González
Spain	9.6	8.9	9.1	7.6	8.8	5.4	5.0	Garcia
Japan	14.5	11.3	12.0	9.0	9.2	6.2	6.0	Satō
Finland	13.8	12.2	12.3	10.5	10.5	7.9	7.8	Virtanen
England	17.4	13.3	14.6	10.2	11.0	6.7	6.4	Smith
Estonia	11.9	11.7	11.7	11.3	11.6	7.9	7.6	Ivanov
Australia	18.6	14.1	15.3	10.9	11.8	7.4	6.8	Smith
Norway	13.7	12.5	13.0	9.9	11.9	6.5	6.4	Hansen
USA	19.1	14.9	16.9	10.9	12.3	7.2	6.9	Smith
Facebook	21.5	16.2	18.1	12.1	13.7	8.1	7.7	Smith

Source	H_0	H_1	Ĝ	H_2	$\tilde{\mu}_{\frac{1}{2}}$	$\tilde{\lambda}_3$	H_{∞}	<i>x</i> ₁	
Iceland (ç)	7.9	7.5	7.3	6.9	6.8	5.1	4.9	Guðrún	_
Spain (♀)	8.3	7.9	7.8	7.3	7.1	5.3	5.1	Maria	
Belgium (ç)	15.2	10.1	10.9	8.1	8.2	5.5	4.9	Maria	
USA (ç)	15.1	10.9	12.9	8.7	8.3	6.5	6.3	Jennifer	
Spain (♂)	8.6	7.8	7.8	6.9	6.6	4.9	4.8	Jose	
lceland (♂)	7.9	7.5	7.3	6.9	6.8	5.0	4.8	Jón	
USA (♂)	15.2	9.4	12.0	7.2	6.9	5.2	5.0	Michael	
Belgium (♂)	15.0	9.7	10.4	8.2	7.8	6.1	5.7	Jean	
lceland	8.9	8.5	8.3	7.9	7.7	5.9	5.8	Jón	
Spain	9.7	9.0	8.9	8.1	7.9	6.0	5.9	Jose	
Belgium	15.0	10.2	10.3	8.8	8.7	6.1	5.7	Maria	
USA	16.7	11.2	14.0	8.7	8.6	6.2	5.9	Michael	
Facebook	20.6	12.4	15.7	9.9	9.8	7.4	7.3	David	

Forenames over time

Source	H ₀	H_1	Ĝ	H ₂	$\tilde{\mu}_{\frac{1}{2}}$	$\tilde{\lambda}_3$	H_{∞}	<i>x</i> ₁
USA, 1950 (♀)	11.8	8.6	9.1	7.1	6.8	5.2	5.0	Mary
USA, 1950 (♂)	11.7	7.7	8.3	6.2	5.8	4.6	4.6	James
USA, 1960 (♀)	11.9	9.1	9.5	7.6	7.1	5.6	5.2	Lisa
USA, 1960 (♂)	11.9	7.9	8.6	6.4	5.9	4.7	4.6	Michael
USA, 1970 (♀)	12.1	9.7	10.3	7.7	7.6	5.5	4.8	Jennifer
USA, 1970 (♂)	12.1	8.4	9.3	6.7	6.3	5.0	4.6	Michael
USA, 1980 (♀)	12.2	9.7	10.4	7.7	7.6	5.4	5.3	Jessica
USA, 1980 (₽) USA, 1980 (♂)	12.2	8.6	9.6	6.9	6.4	5.1	4.9	Michael
USA, 1900 (0)	12.2	0.0	5.0	0.5	0.4	5.1	4.5	Michael
USA, 1990 (♀)	12.3	10.3	10.8	8.4	8.3	6.1	6.0	Jessica
USA, 1990 (ੋ)	12.3	9.3	10.0	7.5	7.1	5.7	5.5	Michael
USA, 2000 (ç)	12.4	10.8	11.1	9.1	9.0	6.6	6.5	Emily
USA, 2000 (♂)	12.2	9.9	10.4	8.2	7.8	6.4	6.2	Jacob

Source	H_0	H_1	Ĝ	H_2	$\tilde{\mu}_{\frac{1}{2}}$	$\tilde{\lambda}_3$	H_∞	<i>x</i> ₁	
Los Angeles	15.8	11.7	13.1	9.2	9.4	6.5	6.4	Lucky	
Des Moines	13.6	11.6	12.4	9.4	9.7	6.5	6.2	Buddy	
San Francisco	13.7	11.6	12.0	9.6	9.8	6.7	6.7	Buddy	

Source	H_0	H_1	Ĝ	H_2	$\tilde{\mu}_{\frac{1}{2}}$	$\tilde{\lambda}_3$	H_∞	<i>x</i> ₁
School Mascots (US)	11.8	8.1	9.3	6.2	5.7	4.5	4.1	Eagles
UK High Schools	8.7	8.5	8.2	8.3	8.0	7.4	7.3	Holyrood
UK Cities	9.2	8.5	8.8	5.9	8.7	4.4	3.0	London
Tourist Destinations	13.0	12.0	12.5	9.5	12.4	6.3	5.9	London
UK Primary Schools	14.0	13.8	13.5	13.6	13.3	12.1	12.1	Essex

Comparison to Other Authentication Schemes

Comparison to Other Authentication Schemes

- Security even lower than expected!
- Against online attack: $\tilde{\lambda}_3 \lessapprox$ 8 bits
 - Compromise 1 of every 80 accounts
- Against offline attack: $\overline{\tilde{\mu}_{\frac{1}{2}} \lesssim 12 \text{ bits}}$
 - A few thousand guesses per account ...
- Interesting: $\tilde{\mu}_{\frac{1}{2}}$ well-approximated by H_2

Name Correlations

Dubious model: forenames chosen independently from surnames

Name Correlations

Erik Anderson 28.5000027 Scott Anderson 26.2240310808 Eric Anderson 25.7454870714 Ryan Anderson 24.9834030274 Kyle Anderson 22.59694489 Tyler Anderson 20.7791328141 Ashley Anderson 20.1428280702

Nicolas Anderson -10.658058566 Claudia Anderson -10.827656673 Luis Anderson -11.8887183582 Marco Anderson -12.0011017638 Ana Anderson -12.0950091322 Carlos Anderson -12.7907931815 Jose Anderson -14.4516505046 Juan Anderson -15.411686568 Maria Anderson -18.6010320036

Name Correlations

Jose Garcia 98.5011019005 Juan Garcia 82.5912299727 Carlos Garcia 79.5644630229 Luis Garcia 78.9805405513 Ana Garcia 71.4654714218 Javier Garcia 68.1730545731 Maria Garcia 65.5565931662 Miguel Garcia 59.2541621707

Scott Garcia -16.6967016634 Michael Garcia -16.781135422 Amy Garcia -17.0189476524 Ryan Garcia -18.2193592941 James Garcia -18.628543594 Matt Garcia -18.9610296901 Chris Garcia -20.1867129035 Sarah Garcia -22.3262090845

- Most frequently-paired names: Maria Gonzalez
- Least frequently-paired names: Juan Khan
- Knowing a target's ethnicity can **double** attack efficiency

Source	H_0	H_1	Ĝ	H_2	$\tilde{\mu}_{\frac{1}{2}}$	$\tilde{\lambda}_3$	H_{∞}	<i>x</i> ₁		
Surnames										
Spanish Forenames	19.8	14.9	16.8	11.0	12.4	7.3	7.2	Gonzalez		
All Forenames	21.5	16.2	18.1	12.1	13.7	8.1	7.7	Smith		
Forenames										
Spanish Surnames	17.5	11.0	13.4	8.6	8.4	6.0	5.8	Maria		
All Surnames	20.6	12.4	15.7	9.9	9.8	7.4	7.3	David		

• If we know X, we can actively shape it

- $\bullet~\mbox{Respond}$ with \perp for some enrolment attempts
- Naive approach: Always reject most common answers
- Better: Probabilistically reject common answers
 - For any \mathcal{X} , find optimal r_1, r_2, \ldots, r_N
 - Subject to a constraint on overall rejection rate r_{*}

• If we know X, we can actively shape it

• Respond with \perp for some enrolment attempts

• Naive approach: Always reject most common answers

- Better: Probabilistically reject common answers
 - For any \mathcal{X} , find optimal r_1, r_2, \ldots, r_N
 - Subject to a constraint on overall rejection rate r_{*}

- If we know X, we can actively shape it
 - Respond with \perp for some enrolment attempts
- Naive approach: Always reject most common answers
- Better: Probabilistically reject common answers
 - For any \mathcal{X} , find optimal r_1, r_2, \ldots, r_N
 - Subject to a constraint on overall rejection rate r_{*}

Effectiveness of Shaping

- Need new metrics to reason about guessing attacks
- Most deployed questions insecure against statistical attack
- Human-generated names inherently lack sufficient diversity
 - Approximated well by Zipf distribution!
- Systems should use alternate channels whenever possible