WHAT'S IN A NAME?

 Evaluating Statistical ATtacks on Personal

 Evaluating Statistical ATtacks on Personal

 Knowledge Questions

 Knowledge Questions}

Joseph Bonneau

jcb82@cl.cam.ac.uk

Mike Just
Greg Matthews

Computer Laboratory

Financial Cryptography and Data Security 2010 Tenerife, Spain
Jandary 26, 2010

Research Question

What is your oldest sibling's middle name?
Roscoe

Continue Cancel

How "secure" are personal knowledge questions against guessing?

Authenticating Humans

Personal Knowledge Questions

- Pros
- Cost
- Memorability?
- Cons
- Privacy
- Security

Authentication on the Web

(1) Text Passwords
(2) Delegation
(3) Personal Knowledge Questions

Trends:

- OpenID may make delegation preferred method
- Large webmail providers becoming the root of trust

In the News

- Paris Hilton T-Mobile Sidekick, 2005-02-20
- Sarah Palin Yahoo! email, 2008-09-16
- Twitter corporate Google Docs, 2009-07-16

In the News

- Paris Hilton T-Mobile Sidekick, 2005-02-20
- Sarah Palin Yahoo! email, 2008-09-16
- Twitter corporate Google Docs, 2009-07-16

In the News

twitter

- Paris Hilton T-Mobile Sidekick, 2005-02-20
- Sarah Palin Yahoo! email, 2008-09-16
- Twitter corporate Google Docs, 2009-07-16

Protocol Model

Client

Server

I am i

Increment t_{i}
Select $q \mathbb{R} Q_{i}$

Please answer q

The answer is x
Verify x

Targeted Attacker

- Attack a specific i
- Real-world identity of i is known
- Per-target research possible

Targeted Attacker

- Web search
- Used in Hilton, Palin compromises
- Public records
- Griffith et. al: 30\% of individual's mother's maiden names found via marriage, birth records
- Social engineering
- Dumpster diving, burglary
- Acquaintance attacks
- Schecter et. al: $\sim 25 \%$ of questions guessed by friends, family

Trawling Attacker

- Attack all $i \in I$ from a large set I
- Real-world identities are unknown
- Population-wide statistics

Trawling Attacker

- Blind attack
- Don't understand i or q
- CAPTCHA-ised protocols or user-written questions
- "What do I want to do?"
- Statistical attack
- Understand q but not i
- Guess most likely answers
- Thought to be used in Twitter compromise

Measuring Security Against Guessing

Which is "harder" to guess:

- Surname of randomly chosen Internet user
- Randomly chosen 4-digit PIN

Mathematics of Guessing

- Answer X is drawn from a finite, known distribution \mathcal{X}
- $|\mathcal{X}|=N$
- $P\left(X=x_{i}\right)=p_{i}$ for each possible answer x_{i}
- \mathcal{X} is monotonically decreasing: $p_{1} \geq p_{2} \geq \cdots \geq p_{N}$

Goal: guess X using as few queries "is $X=x_{i}$?"as possible.

Shannon Entropy

$$
H_{1}(\mathcal{X})=-\sum_{i=1}^{N} p_{i} \lg p_{i}
$$

- $H_{1}($ surname $)=16.2$ bits
- $H_{1}($ PIN $)=13.3$ bits
- Meaning: Expected number of queries "Is $X \in \mathcal{S}$?" for arbitrary subsets $\mathcal{S} \subseteq \mathcal{X}$ needed to guess X. (Source-Coding Theorem)

Shannon Entropy

$$
H_{1}(\mathcal{X})=-\sum_{i=1}^{N} p_{i} \lg p_{i}
$$

- $H_{1}($ surname $)=16.2$ bits
- $H_{1}($ PIN $)=13.3$ bits
- Meaning: Expected number of queries "Is $X \in \mathcal{S}$?" for arbitrary subsets $\mathcal{S} \subseteq \mathcal{X}$ needed to guess X. (Source-Coding Theorem)

Guessing Entropy

$$
G(\mathcal{X})=E\left[\#_{\text {guesses }}(X \stackrel{R}{\leftarrow} \mathcal{X})\right]=\sum_{i=1}^{N} p_{i} \cdot i
$$

- $G($ surname $) \approx 137000$ guesses
- $G($ PIN $) \approx 5000$ guesses
- Meaning: Expected number of queries "Is $X=x_{i}$?" for $i=1,2, \ldots, N$ (optimal sequential guessing)

The Trouble with Guessing

- $\mathcal{U}_{16}-N=16, p_{1}=p_{2}=\cdots=p_{16}=\frac{1}{16}$
- $H_{1}\left(\mathcal{U}_{16}\right)=4$ bits
- $G\left(\mathcal{U}_{16}\right)=8.5$ guesses

The Trouble with Guessing

- $\mathcal{X}_{65}-N=65, p_{1}=\frac{1}{2}, p_{2}=\cdots=p_{65}=\frac{1}{128}$
- $H_{1}\left(\mathcal{X}_{65}\right)=4$ bits
- $G\left(\mathcal{X}_{65}\right)=17.25$ guesses

The Trouble with Guessing

- $H_{1}\left(\mathcal{X}_{65}\right)=H_{1}\left(\mathcal{U}_{16}\right)$
- $G\left(\mathcal{X}_{65}\right)>G\left(\mathcal{U}_{16}\right)$
- Adversary can guess $X \stackrel{\mathrm{R}}{\leftarrow} \mathcal{X}_{65}$ in 1 try half the time!

Marginal Guessing

Suppose Eve wants to guess any k out of m 4-digit PINS

PIN \#1	PIN \#2	PIN \#3	\ldots	PIN \#m
0000	0000	0000	\ldots	0000
0001	0001	0001	\ldots	0001
0002	0002	0002	\ldots	0002
\ldots	\ldots	\ldots	\ldots	\ldots
9998	9998	9998	\ldots	9998
9999	9999	9999	\ldots	9999

Marginal Guessing

Suppose Eve wants to guess any k out of m 4-digit PINS

PIN \#1	PIN \#2	PIN \#3	\ldots	PIN \#m
0000	0000	0000	\ldots	0000
0001	0001	0001	\ldots	0001
0002	0002	0002	\ldots	0002
\ldots	\ldots	\ldots	\ldots	\ldots
9998	9998	9998	\ldots	9998
9999	9999	9999	\ldots	9999

Marginal Guessing

Suppose Eve wants to guess any k out of m 4-digit PINS

PIN \#1	PIN \#2	PIN \#3	\ldots	PIN \#m
0000	0000	0000	\ldots	0000
0001	0001	0001	\ldots	0001
0002	0002	0002	\ldots	0002
\ldots	\ldots	\ldots	\ldots	\ldots
9998	9998	9998	\ldots	9998
9999	9999	9999	\ldots	9999

Marginal Guessing

Suppose Eve wants to guess any k out of m 4-digit PINS

PIN \#1	PIN \#2	PIN \#3	\ldots	PIN \#m
0000	0000	0000	\ldots	0000
0001	0001	0001	\ldots	0001
0002	0002	0002	\ldots	0002
\ldots	\ldots	\ldots	\ldots	\ldots
9998	9998	9998	\ldots	9998
9999	9999	9999	\ldots	9999

Any order of guessing is equivalent.

Marginal Guessing

Suppose Mallory wants to guess any k out of m surnames

Name \#1	Name \#2	Name \#3	\ldots	Name \#m
Smith	Smith	Smith	\ldots	Smith
Jones	Jones	Jones	\ldots	Jones
Johnson	Johnson	Johnson	\ldots	Johnson
\ldots	\ldots	\ldots	\ldots	\ldots
Ytterock	Ytterock	Ytterock	\ldots	Ytterock
Zdrzynski	Zdrzynski	Zdrzynski	\ldots	Zdrzynski

Marginal Guessing

Suppose Mallory wants to guess any k out of m surnames

Name \#1	Name \#2	Name \#3	\ldots	Name \#m
Smith	Smith	Smith	\ldots	Smith
Jones	Jones	Jones	\ldots	Jones
Johnson	Johnson	Johnson	\ldots	Johnson
\ldots	\ldots	\ldots	\ldots	\ldots
Ytterock	Ytterock	Ytterock	\ldots	Ytterock
Zdrzynski	Zdrzynski	Zdrzynski	\ldots	Zdrzynski

Marginal Guessing

Suppose Mallory wants to guess any k out of m surnames

Name \#1	Name \#2	Name \#3	\ldots	Name \#m
Smith	Smith	Smith	\ldots	Smith
Jones	Jones	Jones	\ldots	Jones
Johnson	Johnson	Johnson	\ldots	Johnson
\ldots	\ldots	\ldots	\ldots	\ldots
Ytterock	Ytterock	Ytterock	\ldots	Ytterock
Zdrzynski	Zdrzynski	Zdrzynski	\ldots	Zdrzynski

Obvious optimal strategy

Measuring Security Against Guessing

Given 100 accounts:

- PIN: 50\% chance of success after 5000 guesses
- Surname: 50\% chance of success after 168 guesses

Marginal Guessing

- Neither H_{1} nor G model an adversary who can give up
- Marginal Guesswork

Give up after reaching probability α of success:

- Marginal Success Rate Give up after β guesses:

Marginal Guessing

- Neither H_{1} nor G model an adversary who can give up
- Marginal Guesswork

Give up after reaching probability α of success:

$$
\mu_{\alpha}(\mathcal{X})=\min \left\{j \in[1, N] \mid \sum_{i=1}^{j} p_{i} \geq \alpha\right\}
$$

- Marginal Success Rate Give up after β guesses:

Marginal Guessing

- Neither H_{1} nor G model an adversary who can give up
- Marginal Guesswork

Give up after reaching probability α of success:

$$
\mu_{\alpha}(\mathcal{X})=\min \left\{j \in[1, N] \mid \sum_{i=1}^{j} p_{i} \geq \alpha\right\}
$$

- Marginal Success Rate Give up after β guesses:

$$
\lambda_{\beta}(\mathcal{X})=\sum_{i=1}^{\beta} p_{i}
$$

Conversion to Bits

- $H_{1}, G, \mu_{\alpha}, \lambda_{\beta}$ all have different units
- To convert $G(\mathcal{X})$ to bits
(1) Find discrete uniform \mathcal{U}_{N} with $G\left(\mathcal{U}_{N}\right)=G(\mathcal{X})$
(2) "Effective key length" $\tilde{G}(\mathcal{X})=\lg N$
- In general:

$$
\tilde{G}(\mathcal{X})=\lg [2 \cdot G(\mathcal{X})-1]
$$

- Similarly:

- Nice property: $\tilde{\lambda}_{1}$ is the min-entropy H_{∞}

Conversion to Bits

- $H_{1}, G, \mu_{\alpha}, \lambda_{\beta}$ all have different units
- To convert $G(\mathcal{X})$ to bits
(1) Find discrete uniform \mathcal{U}_{N} with $G\left(\mathcal{U}_{N}\right)=G(\mathcal{X})$
(2) "Effective key length" $\tilde{G}(\mathcal{X})=\lg N$
- In general:

- Similarly:

- Nice property: $\tilde{\lambda}_{1}$ is the min-entropy H_{∞}

Conversion to Bits

- $H_{1}, G, \mu_{\alpha}, \lambda_{\beta}$ all have different units
- To convert $G(\mathcal{X})$ to bits
(1) Find discrete uniform \mathcal{U}_{N} with $G\left(\mathcal{U}_{N}\right)=G(\mathcal{X})$
(2) "Effective key length" $\tilde{G}(\mathcal{X})=\lg N$
- In general:

$$
\tilde{G}(\mathcal{X})=\lg [2 \cdot G(\mathcal{X})-1]
$$

- Similarly:

- Nice property: $\tilde{\lambda}_{1}$ is the min-entropy H_{∞}

Conversion to Bits

- $H_{1}, G, \mu_{\alpha}, \lambda_{\beta}$ all have different units
- To convert $G(\mathcal{X})$ to bits
(1) Find discrete uniform \mathcal{U}_{N} with $G\left(\mathcal{U}_{N}\right)=G(\mathcal{X})$
(2) "Effective key length" $\tilde{G}(\mathcal{X})=\lg N$
- In general:

$$
\tilde{G}(\mathcal{X})=\lg [2 \cdot G(\mathcal{X})-1]
$$

- Similarly:

$$
\tilde{\mu}_{\alpha}(\mathcal{X})=\lg \left(\frac{\mu_{\alpha}(\mathcal{X})}{\alpha}\right) \quad \tilde{\lambda}_{\beta}(\mathcal{X})=\lg \left(\frac{\beta}{\lambda_{\beta}(\mathcal{X})}\right)
$$

- Nice property: $\tilde{\lambda}_{1}$ is the min-entropy H_{∞}

Conversion to Bits

- $H_{1}, G, \mu_{\alpha}, \lambda_{\beta}$ all have different units
- To convert $G(\mathcal{X})$ to bits
(1) Find discrete uniform \mathcal{U}_{N} with $G\left(\mathcal{U}_{N}\right)=G(\mathcal{X})$
(2) "Effective key length" $\tilde{G}(\mathcal{X})=\lg N$
- In general:

$$
\tilde{G}(\mathcal{X})=\lg [2 \cdot G(\mathcal{X})-1]
$$

- Similarly:

$$
\tilde{\mu}_{\alpha}(\mathcal{X})=\lg \left(\frac{\mu_{\alpha}(\mathcal{X})}{\alpha}\right) \quad \tilde{\lambda}_{\beta}(\mathcal{X})=\lg \left(\frac{\beta}{\lambda_{\beta}(\mathcal{X})}\right)
$$

- Nice property: $\tilde{\lambda}_{1}$ is the min-entropy H_{∞}

Examples

\mathcal{U}_{16}	\mathcal{X}_{65}
4	4
4	5.1
4	1
4	3.8

The Complete View

The Complete View

The Complete View

Incomparability Theorems

Theorem (adapted from Pliam)

Given any $m>0, \beta>0$ and $0<\alpha<1$, there exists a distribution \mathcal{X} such that $\tilde{\mu}_{\alpha}(\mathcal{X})<H_{1}(\mathcal{X})-m$ and $\tilde{\lambda}_{\beta}(\mathcal{X})<H_{1}(\mathcal{X})-m$.

Theorem (adapted from Boztaş)

Given any $m>0, \beta>0$ and $0<\alpha<1$, there exists a distribution \mathcal{X} such that $\tilde{\mu}_{\alpha}(\mathcal{X})<\tilde{G}(\mathcal{X})-m$ and $\tilde{\lambda}_{\beta}(\mathcal{X})<\tilde{G}(\mathcal{X})-m$.

Theorem (new)

Given any $m>0, \alpha_{1}>0$, and $\alpha_{2}>0$ with $0<\alpha_{1}<\alpha_{2}<1$, there exists a distribution \mathcal{X} such that $\tilde{\mu}_{\alpha_{1}}(\mathcal{X})<\tilde{\mu}_{\alpha_{1}}(\mathcal{X})-m$.

Application to Personal Knowledge Questions

- λ_{3} models the usual cutoff of 3 guesses
- $\lambda_{1}=H_{\infty}$ models an attacker with infinite accounts
- $\mu_{\frac{1}{2}}$ is reasonable for offline attacks

Common Answer Categories

Category Example Questions
Forename What is your grandfather's first name?
What is your father's middle name?
Surname What is your mother's maiden name?
Who was your favourite school teacher?
Pet Name What was your first pet's name?
Place In what city were you born?
Where did you go for your honeymoon?
What is the name of your high school?
Other What was your grandfather's occupation?
What is your favourite movie?

Common Answer Categories

- Just and Aspinall: 70\% of answers are proper names
- 25% surname
- 10% forename
- 15% pet name
- 20% place name
- Most others are trivially insecure
- What is my favourite colour?
- What is the worst day of the week?

Our Data Sources

- Collected name data from published government sources
- Most census statistics suppress uncommon names
- Doesn't impact $\tilde{\mu}_{\alpha}, \tilde{\lambda}_{\beta}$
- Can still get lower bounds on H_{1}, \tilde{G}
- Crawled Facebook for 65 M full names

Overview

Source	H_{0}	H_{1}	\tilde{G}	H_{2}	$\tilde{\mu}_{\frac{1}{2}}$	$\tilde{\lambda}_{3}$	H_{∞}	x_{1}
UK City	9.2	8.5	8.8	5.9	8.7	4.4	3.0	London
Pet Name	15.8	11.7	13.1	9.2	9.4	6.5	6.4	Lucky
UK High School	8.7	8.5	8.2	8.3	8.0	7.4	7.3	Holyrood
Forename	20.6	12.4	15.7	9.9	9.8	7.4	7.3	David
Surname	21.5	16.2	18.1	12.1	13.7	8.1	7.7	Smith
Full Name	25.1	24.0	24.4	20.8	23.3	14.4	14.4	Maria Gonzalez

Surnames

Source	H_{0}	H_{1}	\tilde{G}	H_{2}	$\tilde{\mu}_{\frac{1}{2}}$	$\tilde{\lambda}_{3}$	H_{∞}	x_{1}
South Korea	7.5	4.6	4.5	3.5	3.3	2.7	2.2	Kim
Chile	6.8	6.6	6.3	6.3	6.0	4.9	4.5	González
Spain	9.6	8.9	9.1	7.6	8.8	5.4	5.0	Garcia
Japan	14.5	11.3	12.0	9.0	9.2	6.2	6.0	Satō
Finland	13.8	12.2	12.3	10.5	10.5	7.9	7.8	Virtanen
England	17.4	13.3	14.6	10.2	11.0	6.7	6.4	Smith
Estonia	11.9	11.7	11.7	11.3	11.6	7.9	7.6	Ivanov
Australia	18.6	14.1	15.3	10.9	11.8	7.4	6.8	Smith
Norway	13.7	12.5	13.0	9.9	11.9	6.5	6.4	Hansen
USA	19.1	14.9	16.9	10.9	12.3	7.2	6.9	Smith
Facebook	21.5	16.2	18.1	12.1	13.7	8.1	7.7	Smith

Forenames

Source	H_{0}	H_{1}	\tilde{G}	H_{2}	$\tilde{\mu}_{\frac{1}{2}}$	$\tilde{\lambda}_{3}$	H_{∞}	x_{1}
Iceland (\%)	7.9	7.5	7.3	6.9	6.8	5.1	4.9	Guðrún
Spain (\%)	8.3	7.9	7.8	7.3	7.1	5.3	5.1	Maria
Belgium (¢)	15.2	10.1	10.9	8.1	8.2	5.5	4.9	Maria
USA (\%)	15.1	10.9	12.9	8.7	8.3	6.5	6.3	Jennifer
Spain (0°)	8.6	7.8	7.8	6.9	6.6	4.9	4.8	Jose
Iceland ($\sigma^{\text {a }}$)	7.9	7.5	7.3	6.9	6.8	5.0	4.8	Jón
USA (σ^{*})	15.2	9.4	12.0	7.2	6.9	5.2	5.0	Michael
Belgium (0^{7})	15.0	9.7	10.4	8.2	7.8	6.1	5.7	Jean
Iceland	8.9	8.5	8.3	7.9	7.7	5.9	5.8	Jón
Spain	9.7	9.0	8.9	8.1	7.9	6.0	5.9	Jose
Belgium	15.0	10.2	10.3	8.8	8.7	6.1	5.7	Maria
USA	16.7	11.2	14.0	8.7	8.6	6.2	5.9	Michael
Facebook	20.6	12.4	15.7	9.9	9.8	7.4	7.3	David

Forenames over time

Source	H_{0}	H_{1}	\tilde{G}	H_{2}	$\tilde{\mu}_{\frac{1}{2}}$	$\tilde{\lambda}_{3}$	H_{∞}	x_{1}
USA, 1950 (¢)	11.8	8.6	9.1	7.1	6.8	5.2	5.0	Mary
USA, 1950 ($0^{\text {² }}$)	11.7	7.7	8.3	6.2	5.8	4.6	4.6	James
USA, 1960 (ㅇ)	11.9	9.1	9.5	7.6	7.1	5.6	5.2	Lisa
USA, 1960 ($0^{\text {² }}$)	11.9	7.9	8.6	6.4	5.9	4.7	4.6	Michael
USA, 1970 (¢)	12.1	9.7	10.3	7.7	7.6	5.5	4.8	Jennifer
USA, 1970 ($0^{\text {² }}$)	12.1	8.4	9.3	6.7	6.3	5.0	4.6	Michael
USA, 1980 (¢)	12.2	9.7	10.4	7.7	7.6	5.4	5.3	Jessica
USA, 1980 ($0^{\text {² }}$)	12.2	8.6	9.6	6.9	6.4	5.1	4.9	Michael
USA, 1990 (¢)	12.3	10.3	10.8	8.4	8.3	6.1	6.0	Jessica
USA, 1990 ($0^{\text {² }}$)	12.3	9.3	10.0	7.5	7.1	5.7	5.5	Michael
USA, 2000 (¢)	12.4	10.8	11.1	9.1	9.0	6.6	6.5	Emily
USA, 2000 ($0^{\text {c }}$)	12.2	9.9	10.4	8.2	7.8	6.4	6.2	Jacob

Pets

Source	H_{0}	H_{1}	\tilde{G}	H_{2}	$\tilde{\mu}_{\frac{1}{2}}$	$\tilde{\lambda}_{3}$	H_{∞}	x_{1}
Los Angeles	15.8	11.7	13.1	9.2	9.4	6.5	6.4	Lucky
Des Moines	13.6	11.6	12.4	9.4	9.7	6.5	6.2	Buddy
San Francisco	13.7	11.6	12.0	9.6	9.8	6.7	6.7	Buddy

Places

Source	H_{0}	H_{1}	\tilde{G}	H_{2}	$\tilde{\mu}_{\frac{1}{2}}$	$\tilde{\lambda}_{3}$	H_{∞}	x_{1}
School Mascots (US)	11.8	8.1	9.3	6.2	5.7	4.5	4.1	Eagles
UK High Schools	8.7	8.5	8.2	8.3	8.0	7.4	7.3	Holyrood
UK Cities	9.2	8.5	8.8	5.9	8.7	4.4	3.0	London
Tourist Destinations	13.0	12.0	12.5	9.5	12.4	6.3	5.9	London
UK Primary Schools	14.0	13.8	13.5	13.6	13.3	12.1	12.1	Essex

Comparison to Other Authentication Schemes

Comparison to Other Authentication Schemes

Remarks

- Security even lower than expected!
- Against online attack: $\tilde{\lambda}_{3} \lesssim 8$ bits
- Compromise 1 of every 80 accounts ...
- Against offline attack: $\tilde{\mu}_{\frac{1}{2}} \lesssim 12$ bits
- A few thousand guesses per account ...
- Interesting: $\tilde{\mu}_{\frac{1}{2}}$ well-approximated by H_{2}

Name Correlations

Dubious model: forenames chosen independently from surnames

Name Correlations

Erik Anderson 28.5000027
Scott Anderson 26.2240310808
Eric Anderson 25.7454870714
Ryan Anderson 24.9834030274
Kyle Anderson 22.59694489
Tyler Anderson 20.7791328141
Ashley Anderson 20.1428280702
Nicolas Anderson -10.658058566
Claudia Anderson -10.827656673
Luis Anderson -11.8887183582
Marco Anderson -12.0011017638
Ana Anderson -12.0950091322
Carlos Anderson -12.7907931815 Jose Anderson - 14.4516505046
Juan Anderson -15.411686568
Maria Anderson -18.6010320036

Name Correlations

> Jose Garcia 98.5011019005 Juan Garcia 82.5912299727 Carlos Garcia 79.5644630229 Luis Garcia 78.9805405513 Ana Garcia 71.4654714218 Javier Garcia 68.1730545731 Maria Garcia 65.5565931662 Miguel Garcia 59.2541621707 \ldots Scott Garcia -16.6967016634 Michael Garcia -16.781135422 Amy Garcia -17.0189476524 Ryan Garcia -18.2193592941 James Garcia -18.628543594 Matt Garcia -18.9610296901 Chris Garcia -20.1867129035 Sarah Garcia -22.3262090845

Ethnic Correlations

- Most frequently-paired names: Maria Gonzalez
- Least frequently-paired names: Juan Khan
- Knowing a target's ethnicity can double attack efficiency

Source	H_{0}	H_{1}	\tilde{G}	H_{2}	$\tilde{\mu}_{\frac{1}{2}}$	$\tilde{\lambda}_{3}$	H_{∞}	x_{1}
	Surnames							
Spanish Forenames	19.8	14.9	16.8	11.0	12.4	7.3	7.2	Gonzalez
All Forenames	21.5	16.2	18.1	12.1	13.7	8.1	7.7	Smith
Forenames								
Spanish Surnames	17.5	11.0	13.4	8.6	8.4	6.0	5.8	Maria
All Surnames	20.6	12.4	15.7	9.9	9.8	7.4	7.3	David

Countermeasures

- If we know \mathcal{X}, we can actively shape it
- Respond with \perp for some enrolment attempts
- Naive approach: Always reject most common answers
- Better: Probabilistically reject common answers
- For any \mathcal{X}, find optimal $r_{1}, r_{2}, \ldots, r_{N}$
- Subject to a constraint on overall rejection rate $r_{\text {* }}$

Countermeasures

- If we know \mathcal{X}, we can actively shape it
- Respond with \perp for some enrolment attempts
- Naive approach: Always reject most common answers
- Better: Probabilistically reject common answers - For any \mathcal{X}, find optimal $r_{1}, r_{2}, \ldots, r_{N}$
- Subject to a constraint on overall rejection rate $r_{\text {}}$

Countermeasures

- If we know \mathcal{X}, we can actively shape it
- Respond with \perp for some enrolment attempts
- Naive approach: Always reject most common answers
- Better: Probabilistically reject common answers
- For any \mathcal{X}, find optimal $r_{1}, r_{2}, \ldots, r_{N}$
- Subject to a constraint on overall rejection rate r_{*}

Optimal Shaping Algorithm

Effectiveness of Shaping

Conclusions

- Need new metrics to reason about guessing attacks
- Most deployed questions insecure against statistical attack
- Human-generated names inherently lack sufficient diversity
- Approximated well by Zipf distribution!
- Systems should use alternate channels whenever possible

