Alice and Bob in Love: Cryptographic Communication Using Natural Entropy

Joseph Bonneau

University of Cambridge Computer Laboratory

17th International Workshop on Security Protocols April 2, 2009

Outline

2 Protocol

э

Human Memory and Entropy

- Evolved to remember emotion, experience
- Can't remember high-entropy crypto keys
- Many pairs of people naturally share a huge entropy pool
 - Lovers
 - Siblings
 - Close friends

Human Challenge-Response

What was the name of the family who lived in the Hill House in Fond-du-Lac, Wisconsin?

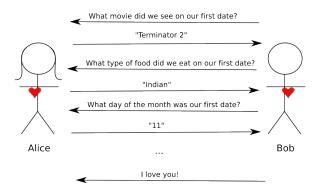
A [] > A [] > A

Human Challenge-Response

Calvin: i came here for a vacation and i was robbed by some gang Calvin: i want you to loan me \$900 Calvin: you can have the money cond via western union

Calvin: you can have the money send via western union

Evan: ok well i want to help you, since we're friends


Evan: ok one question

Evan: what was the name of our high school mascot?

Calvin: Shawnee Mission Northwest High '01

Evan: good luck finding someone stupid Evan: bye now

Human Challenge-Response

(日)

э

Human Challenge-Response, 1-way?

| 4 同 🕨 🔺 🚍 ト 🤘

э

Applications

- Emergency distress
- Drafting a will
- Password backup

æ

э

・ 一 マ ト ・ 日 ト ・

Goals

- Extract cryptographically secure amount of entropy (\geq 64 bits)
- Minimal recipient sophistication
- Maximise use of available entropy
- Maximise decryption probability

Non-Goals

- Performance
 - Memory overhead
 - Encryption/Decryption processing
- Sender simplicity
 - Grandmother can receive, not send
- Anonymity/Steganography

Building Blocks

• Password Backup Systems

- Carl Ellison, Chris Hall, Randy Milbert, and Bruce Schneier. "Protecting Secret Keys with Personal Entropy." *Future Generation Computer Systems*, 2000.
 - Use traditional secret-sharing
- Nyklas Frykholm and Ari Juels. "Error-tolerant Password Recovery." Computer and Communications Security, 2001.
 - Use error-correcting code
- Personal Knowledge Questions studied empirically
 - Mostly in the context of online "re-authentication"

Improvements

Flexible

- Arbitrary entropy in answers
- Arbitrary recall probability
- Key Strengthening

▲ 同 ▶ → 三 ▶

э

э

Question Generation

- Sender picks a set Q of questions $\{q_0, q_1, \ldots, q_m\}$
 - Also specify answers $A = \{a_0, a_1, \dots, a_m\}$
- For each quesion q_i, annotate:
 - Entropy for attacker, H_i
 - Recall probability for recipient, r_i
 - Optional: multiple-choice answers

Example

<question> <entropy>**3**</entropy><recall>0.95</recall> cprompt>What type of restaurant did we go to before a **concert at St. John's?**</prompt> <option>Chinese</option> <option>Sushi</option> <option>Italian</option> <option>Lebanese</option> <option>Brazilian</option> <option>Mexican</option> <option>Thai</option> <option>Indian</option> <answer>Thai</answer> </question>

Encryption

(NB: Protocol tweaked from pre-proceedings paper)

æ

・ 同 ト ・ ヨ ト ・ ヨ ト

Encryption

Critical step - Designate subsets of keys which can decrypt:
A^{*} = {A_i ∈ A : knowledge of A_i shall enable decryption}

- Secret-sharing by brute-force
- Will add storage, work overhead proportional to $|A^*|$
 - In practice, this won't kill us

▲ 同 ▶ ▲ 三 ▶ ▲

Encryption

• For each decrypting subset A_i , store an offset O_i to recover the master key $K_{\rm M}$:

$$\mathcal{K}^0_i = igoplus_{a_j \in \mathcal{A}_i} \mathbf{H}(a_j || j)$$

$$K^1_i = \mathbf{H}^{2^s}(K^0_i)$$

$$O_i = K_i^1 \oplus K_M$$

• Encryption requires $|A^*|$ storage, $|A^*| \cdot 2^s$ work

< ロ > < 同 > < 回 > < 回 > .

э

Encryption

- Alice sends the following to Bob:
 - $\mathbf{E}_{K_{\mathrm{M}}}(M||A||Q||O)$
 - $MAC_{K_{M}}(E_{K_{M}}(M||A||Q||O))$
 - Q
 - 0
- Decryption straighforward
 - requires searching over $|A^*|$

< /₽ > < ∃ >

Optimisation

- How to pick A*?
- For any set candidate subset $\tilde{A}^* \subset \text{powerset}(A)$ can compute:
 - Minimum entropy brute force path for attacker
 - Estimated success probability for recipient
- Given a desired value for either, can find optimal A^* easily

Structure

• 1 sender (me)

• 8 receivers whom I've had a close relationship with

- Mother
- Father
- Brother
- Sister
- Girlfriend
- Ex-Girlfriend
- College Roommate
- High School Friend

Sender Process

- 60 minutes spent per recipient
- Questions created prior to discussing research with subjects
- No external aids (ie photo albums) used
- Chose A* to yield 64 bits of entropy
- All messages had estimated decryption probability > 0.99

Entropy Estimates

Answer Category	Entropy (bits)		
Color	3		
TV Title	4		
University	5		
Movie Title	6		
First Name	8		
Last Name	10		

æ

Recipient Process

- 24 hours to respond
 - $\bullet\,$ All reported ${\sim}10$ minutes to complete
- All recipients given other recipients' questions
 - Simulation of inside attacker

Message Stats

Receiver	Q	$H_{\rm total}$	p _{success}	A*
Mother	13	88	0.997	306
Father	14	95	0.998	2,027
Brother	17	98	0.999	9,332
Sister	13	87	0.994	518
Girlfriend	16	89	0.999	3,318
Ex-girlfriend	15	84	0.997	189
Ex-Roommate	13	93	0.999	808
HS Friend	15	101	0.999	10,762
Average	14.4	91.9	0.998	3,408

æ

Actual Success Rates

- 6 of 8 messages successfully decrypted
- Overall, 75% of questions answered correctly
 - Predicted 95% ...

→ ∢ ≣

Results

Receiver	Q	Correct	Input	Forgot	Result	Guessed
Mother	13	8	3	2	×	3
Father	14	7	4	3	×	3
Brother	17	13	2	2	~	4
Sister	13	10	2	1	~	2
Girlfriend	16	14	2	0	~	0
Ex-girlfriend	15	13	1	1	~	0
Ex-Roommate	13	10	0	3	~	1
HS Friend	15	10	0	5	~	1
Average	114	83	14	17		14

æ

Error types

- Spelling
 - Vowels Only 'Rachel' vs. 'Rachael'
 - Complex 'Fruit and Fibre' vs. 'Fruit 'N Fibre'
- Phrasing
 - Synonyms 'shoes' instead of 'boots'
 - Grammar 'ride a bike' instead of 'riding a bike'
- Actual Forgetfulness
 - $\frac{1}{3}$ indicated directly as '**don't know**'
 - One answer provided wrong by sender!

Error Breakdown

Result	Frequency		
Correct	74%		
Vowel errors	3%		
Spelling errors	2%		
Synonyms	7%		
Forgotten	14%		

< ロ > < 回 > < 回 > < 回 > < 回 >

æ

Normalisation

- Expecting some issues, normalisation implemented
 - Conversion to lower case
 - Removal of all punctuation, white-space
 - elimination of 'the,' 'and,' trailing 's'
- Prevented some errors, but not enough
- Normalisation has some limits ...

Conclusions

- Encryption is possible using natural entropy
 - Appears to be secure
- Usability is terrible for sender
 - Very hard to come up with questions
- Reliability is also lacking
 - hard to accurately predict recall probability

Authentication

- Some implicit authentication
- Encrypt all answers along with message
- Much weaker than confidentiality level
- Adversary can use any known information to fool Bob
 - Dumpster diving
 - Malware
 - E-mail/social network account compromise

Experimental Design

- Sample size N=8 is insufficient
- Difficult to run a larger study
 - Need fairly sophisticated senders
 - Need sender's actual close relations
- Is the data collected PII?

Experimental Design

- How to model a "real" attacker?
 - Participants unlikely to be highly motivated
- Extremely time-consuming
 - Every question requires different investigation

Privacy Concerns

• How much is given up if the questions Q get published?

▲ 同 ▶ → 三 ▶

э

Better Sender Interface

- Standard classes of question mostly useless
- Estimating recall probably impossible
- Estimating entropy very difficult
- Standardised multiple choice answers might help

Normalisation

- More aggressive normalisation possible
 - Soundex & variants
 - User defined (ie only consider first 4 characters)
- Intuition Hard to get fancy without leaking information
 - Eventually doing homomorphic encryption

Estimating Entropy Automatically

- Realistically only works for multiple choice
- Variation within answer categories
 - What was the name of our waiter in Dallas? high entropy
 - Which co-worker of yours plays the violin? lower entropy
- Requires huge amount of domain-specific knowledge
 - Where did we stay driving from Phoenix to LA?

Fuzzy Matching

- "Close" answers mean something
 - What year did Alissa and Mike get married? '2008'
 - '2007' is much better than '1997'
- Not quite like normalisation-want to give partial credit
- Cheap solution: divide answer character by character
 - Close answer can still miss badly, ie '2000' vs '1999'
- Multiple questions, encode close answers at lower entropy level
 - Destroys performance

More Memorable Items

- Humans even better at dealing with images, sounds, smell
- Huge entropy pool available
- Difficult to encode
- Difficult for sender to come up with

jcb82@cl.cam.ac.uk

Joseph Bonneau Alice and Bob in Love

< ロ > < 回 > < 回 > < 回 > < 回 >

æ