Additional Topics: Big Data

Lecture #2

Algorithms for Big Data

Joseph Bonneau jcb82@cam.ac.uk April 30, 2012

Today's topic: algorithms

Do we need new algorithms?

Quantity is a quality of its own

-Joseph Stalin, apocryphal

- can't always store all data
 - online/streaming algorithms
- memory vs. disk becomes critical
 - algorithms with limited passes
- N² is impossible
 - approximate algorithms
- human insight is limited
 - algorithms for high-dimensional data

Simple algorithms, more data

- Mining of Massive Datasets
 - Anand Rajaraman, Jeffrey Ullman 2010
 - Plus Stanford course, pieces adapted here
- "Synopsis Data Structures for Massive Data Sets"
 - Phillip Gibbons, Yossi Mattias, 1998
- "The Unreasonable Effectiveness of Data"
 - Alon Halevy, Peter Norvig, Fernando Perreira, 2010

The "easy" cases

- sorting
 - Google 1 trillion items, (1 PB) sorted in 6 hours
- searching
 - hashing & distributed search

Streaming algorithms

Have we seen *x* before?

- assume we can store *n* bits $b_1, b_2, \dots b_n$
- use a hash function $\mathbf{H}(x) = \mathbf{h}_1, \, \mathbf{h}_2, \, \dots \, \mathbf{h}_k$
 - each $h_i \in [1, n]$
- when we see x, set b_i , for each i in $\mathbf{H}(x)$

$$n = 8, k = 4$$

$$B = 0000 0000$$

- assume we can store *n* bits $b_1, b_2, \dots b_n$
- use a hash function $\mathbf{H}(x) = \mathbf{h}_1, \, \mathbf{h}_2, \, \dots \, \mathbf{h}_k$
 - each $h_i \in [1, n]$
- when we see x, set b_i , for each i in $\mathbf{H}(x)$

$$n = 8, k = 4$$

$$B = 0000 0000$$

$$\mathbf{H}(jcb82) = 4, 7, 5, 2$$

- assume we can store *n* bits $b_1, b_2, \dots b_n$
- use a hash function $\mathbf{H}(x) = \mathbf{h}_1, \, \mathbf{h}_2, \, \dots \, \mathbf{h}_k$
 - each $h_i \in [1, n]$
- when we see x, set b_i , for each i in $\mathbf{H}(x)$

$$n = 8, k = 4$$

$$B = 0101 1010$$

$$\mathbf{H}(jcb82) = 4, 7, 5, 2$$

$$\mathbf{H}(rja14) = 2, 4, 3, 8$$

- assume we can store *n* bits $b_1, b_2, \dots b_n$
- use a hash function $\mathbf{H}(x) = \mathbf{h}_1, \, \mathbf{h}_2, \, \dots \, \mathbf{h}_k$
 - each $h_i \in [1, n]$
- when we see x, set b_i , for each i in $\mathbf{H}(x)$

$$n = 8, k = 4$$

$$B = 0111 1011$$

$$\mathbf{H}(jcb82) = 4, 7, 5, 2$$

 $\mathbf{H}(rja14) = 2, 4, 3, 8$
 $\mathbf{H}(mgk25) = 8, 3, 7, 1$

- assume we can store *n* bits $b_1, b_2, \dots b_n$
- use a hash function $\mathbf{H}(x) = \mathbf{h}_1, \, \mathbf{h}_2, \, \dots \, \mathbf{h}_k$
 - each $h_i \in [1, n]$
- when we see x, set b_i , for each i in $\mathbf{H}(x)$

$$n = 8, k = 4$$

$$B = 1111 1011$$

$$\mathbf{H}(jcb82) = 4, 7, 5, 2$$

 $\mathbf{H}(rja14) = 2, 4, 3, 8$
 $\mathbf{H}(mgk25) = 8, 3, 7, 1$
 $\mathbf{H}(fms27) = 1, 5, 2, 4$

- assume we can store *n* bits $b_1, b_2, \dots b_n$
- use a hash function $\mathbf{H}(x) = \mathbf{h}_1, \, \mathbf{h}_2, \, \dots \, \mathbf{h}_k$
 - each $h_i \in [1, n]$
- when we see x, set b_i , for each i in $\mathbf{H}(x)$

$$n = 8, k = 4$$

$$B = 1111 1011$$

$$\mathbf{H}(jcb82) = 4, 7, 5, 2$$

 $\mathbf{H}(rja14) = 2, 4, 3, 8$
 $\mathbf{H}(mgk25) = 8, 3, 7, 1$
 $\mathbf{H}(fms27) = 1, 5, 2, 4$

false positive

Bloom filters

- constant time lookup/insertion
- no false negatives
- false positives from N items: $\ln p = (-N/n) / (\ln 2)^2$
 - at 1% p, 1 GB of RAM \approx 77 billion unique items!
- once full, can't expand
- counting bloom filter: store integers instead of bits

Application: market baskets

- assume TESCO stocks 100k items
 - Amazon stocks many more
- market basket:
 - {ravioli, pesto sauce, olive oil, wine}
- perhaps 1 billion baskets per year
 - 2^{100,000} possible baskets...
- what items are "frequently" purchased together?
 - more frequent than predicted by chance

Application: market baskets

- pass #1: add all sub-baskets to counting BF
 - with 8 GB of RAM: 25B baskets
 - restrict basket size $\binom{100,000}{3} > 100$ trillion
- pass #2: check all sub-baskets
 - check $\{x\}, \{y_1, ..., y_n\} \{x, y_1, ..., y_n\}$
 - store possible rules $\{y_1, ..., y_n\} \rightarrow \{x\}$
- pass #3: eliminate false positives
- for better approaches see Ramarajan/Ullman

Other streaming challenges

- rolling average of previous k items
 - sliding window of traffic volume
- hot list most frequent items seen so far
 - probabilistically start tracking new items
- histogram of values

Querying data streams

```
Select segNo, dir, hwy
From SegSpeedStr [Range 5 Minutes]
Group By segNo, dir, hwy
Having Avg(speed) < 40</pre>
```

- Continuous Query Language (CQL)
 - Oracle now shipping version 1
- based on SQL...

Similarity metrics

Which items are similar to x?

Similarity metrics

Which items are similar to x?

- reduce x to a high-dimensional vector
- features:
 - words in a document (bag of words)
 - *shingles* (sequences of *w* characters)
 - various body part measurements (faces)
 - edges, colours in a photograph

Feature extraction - images

Gist Siagan, Itti, 2007

Distance metrics

Chebyshev distance

 $max_i(x_i-y_i)$

Manhattan distance

- $\sum |x_i y_i|$
- Hamming distance for binary vectors
- Euclidean distance

 $\sqrt{\sum (x_i - y_i)^2}$

- Mahalanobis distance
 - Adjusts for different variance
- Cosine distance

 $\sqrt{\sum \frac{(x_i - y_i)^2}{\sigma^2}}$

$$\cos\theta = \frac{\sum x_i \cdot y_i}{|X| \cdot |Y|}$$

Jaccard distance (binary)

 $\frac{|X \cup Y| - |X \cap Y|}{|X \cup Y|}$

The curse of dimensionality

• d = 2: $area(\circ) = \pi$, $area(\Box) = 4$

- ratio = **0.78**
- d = 3: $area(\circ) = (4/3) \pi$, $area(\Box) = 8$
 - ratio = **0.52**

- $d \rightarrow \infty$:
 - ratio \rightarrow **0**!
- all points are "far" by Euclidean distance

The curse of dimensionality

- space is typically very sparse
- most dimensions are semantically useless
 - hard for humans to tell which ones
- need dimension reduction

books to words (input data)

books to words (approximate)

$$\begin{bmatrix} 2.29 & -0.66 & 9.33 & 1.25 & -3.09 \\ 1.77 & 6.76 & 0.90 & -5.50 & -2.13 \\ 4.86 & -0.96 & 8.01 & 0.38 & -0.97 \\ 6.62 & -1.23 & 9.58 & 0.24 & -0.71 \\ 1.14 & 9.19 & 0.33 & -7.19 & -3.13 \end{bmatrix}$$

books to genres

$$\begin{bmatrix} 17.92 & 0 & 0 \\ 0 & 15.17 & 0 \\ 0 & 0 & 3.56 \end{bmatrix}.$$

 $\begin{vmatrix} -.46 & .02 \\ -.07 & -.76 \\ -.74 & 0.1 \end{vmatrix}$

-.76 .06

0

.23

.28 .22 -.56

genre strength (diagonal)

genres to words

books to words (input data)

books to words (approximate)

books to genres

$$\begin{bmatrix} -.54 & .07 & .82 \\ -.1 & -.59 & -.11 \\ -.53 & .06 & -.21 \\ -.65 & .07 & -.51 \\ -.06 & -.8 & .09 \end{bmatrix} \begin{bmatrix} 17.92 & 0 & 0 \\ 0 & 15.17 & 0 \\ 0 & 0 & 3.56 \end{bmatrix}$$

$$-.46$$
 $.02$ $-.87$ 0 $.17$

$$-.07 \quad -.76 \quad .06 \quad .6 \quad .23$$

$$-.74$$
 0.1 .28 .22 $-.56$

genre strength (diagonal)

genres to words

books to words (input data)

books to words (approximate)

$$\begin{bmatrix} 2.29 & -0.66 & 9.33 & 1.25 & -3.09 \\ 1.77 & 6.76 & 0.90 & -5.50 & -2.13 \\ 4.86 & -0.96 & 8.01 & 0.38 & -0.97 \\ 6.62 & -1.23 & 9.58 & 0.24 & -0.71 \\ 1.14 & 9.19 & 0.33 & -7.19 & -3.13 \end{bmatrix}$$

books to genres

 $\begin{bmatrix} 17.92 & 0 & 0 \\ 0 & 15.17 & 0 \\ 0 & 0 & 3.56 \end{bmatrix} \begin{bmatrix} -.46 & .02 & -.87 & 0 & .17 \\ -.07 & -.76 & .06 & .6 & .23 \\ -.74 & 0.1 & .28 & .22 & -.56 \end{bmatrix}$

genre strength (diagonal)

genres to words

genres to words

- computation takes $O(mn^2)$, with m > n
- useful but out-of-reach for largest datasets
- implemented in most statistics packages
 - R, MATLAB, etc
- (often) better linear algebra approaches exist
 - CUR, CMD decomposition

Locality-sensitive hashing

- replace SVD with simple probabilistic approach
- choose a family of hash functions **H** such that:
 - distance(X, Y) \approx distance($\mathbf{H}(X), \mathbf{H}(Y)$)
 - H can produce any number of bits
- compute several different **H**
- investigate further if $\mathbf{H}(\mathbf{X}) = \mathbf{H}(\mathbf{Y})$ exactly
 - scale output size of **H** to minimise cost

MinHash implementation

- compute a random permutation $\sigma_{R}(X)$
- count the number of 0's before a 1 appears
- theorem:
 - pr[MH(X) = MH(Y)] = 1 Jaccard(X, Y)
- combine multiple permutations to add bits

LSH example - Flickr photos

Recommendation systems

Can we recommend books, films, products to users based on their personal tastes?

Recommended for you

Learn more

Next »

The Aviator (2004)

PG-13 Biography | Drama

A biopic depicting the early years of legendary director and aviator Howard Hughes' career, from the late 1920s to the mid-1940s.

Director: Martin Scorsese

Stars: Leonardo DiCaprio and Cate ...

Recommended because of your

interest in J. Edgar.

Recommendation systems

Content-based filtering

- extract features from content
 - actors
 - director
 - genre
 - keywords in plot summary
 - etc.
- find nearest-neighbours to what a user likes or buys

Content-based filtering

PROS

- rate new items
- no herding
- no user information exposed to others

CONS

- features may not be relevant
- recommendations may be boring
 - "filter bubble"

Collaborative filtering

- features are user/item interactions
 - purchases
 - explicit ratings
 - need lots of clean-up, scaling
- user-user filtering: find similar users
 - suggest their top ratings
 - scale for each user's rating style
- item-item filtering: find similar items
 - suggest most similar items

Item-item filtering preferred

Collaborative filtering

PROS

- automatic feature extraction
- surprising recommendations

CONS

- ratings for new users/items
- herding
- privacy

The Netflix Prize, 2006-2009

- 100M film ratings made available
 - **480k** users
 - 17k films
 - (shoddily) anonymised
- 3M ratings held in reserve
 - goal: improve predictions by 10%
 - measure by RMS error
- US \$1 M prize
 - attracted over 2500 teams

Netflix Prize insights

- need to heavily normalise user ratings
 - some users more critical than others
 - user rating style
 - temporal bias
- latent item factors is strongest approach

Netflix Prize league table

Netflix Prize

Home

Rules

Leaderboard

Update

Leaderboard

Showing Test Score. Click here to show quiz score

Display top 20 🗘 leaders.

Rank	Team Name	Best Test Score	½ Improvement	Best Submit Time
Grand	Prize - RMSE = 0.8567 - Winning T	eam: BellKor's Pragr	matic Chaos	
1	BellKor's Pragmatic Chaos	0.8567	10.06	2009-07-26 18:18:28
2	The Ensemble	0.8567	10.06	2009-07-26 18:38:22
3	Grand Prize Team	0.8582	9.90	2009-07-10 21:24:40
4	Opera Solutions and Vandelay United	0.8588	9.84	2009-07-10 01:12:31
5	Vandelay Industries !	0.8591	9.81	2009-07-10 00:32:20
6	PragmaticTheory	0.8594	9.77	2009-06-24 12:06:56
7	BellKor in BigChaos	0.8601	9.70	2009-05-13 08:14:09
8	Dace	0.8612	9.59	2009-07-24 17:18:43
9	Feeds2	0.8622	9.48	2009-07-12 13:11:51
10	BigChaos	0.8623	9.47	2009-04-07 12:33:59
11	Opera Solutions	0.8623	9.47	2009-07-24 00:34:07
12	BellKor	0.8624	9.46	2009-07-26 17:19:11

Netflix Prize aftermath

- winning solution is a messy hybrid
- never implemented in practice!
 - too much pain for little gain...

Clustering

Can we identify *groups* of similar items?

Clustering

Can we identify *groups* of similar items?

Clustering

- identify categories of:
 - organisms (species)
 - customers (tastes)
 - graph nodes (community detection)
- develop cluster scores based on item similarity
 - diameter of clusters?
 - radius of clusters?
 - average distance?
 - distance from other *clusters*?

Hierarchical clustering

 $O(N^2 \lg N)$

Lindblad-Toh et al. 2005

Approximate k-means

- choose # of categories k in advance
 - can test various values
- draw a random "RAM-full" of items
- cluster them "optimally" into k clusters
- identify the "centre"
 - centroid: average of points (Euclidean)
 - clustroid: closest to other points
- assign remaining points to closest centre
 - O(N) time

Classification

Given some examples, can we classify new items?

Classification

- is this item...
 - a spam email?
 - a cancerous cell?
 - the letter 'J'?
- many approaches exist:
 - neural networks
 - Bayesian decision trees
 - domain-specific probabilistic models

Manual classification

Manual classification

k-nearest neighbour classifier

Classify a point by majority vote of its *k* nearest neighbors

k-nearest neighbour classifier

k can make a big difference!

Bias-variance tradeoff

too much variance

Bias-variance tradeoff

too much bias

Linear classifiers

In high-dimensional space, linear is often best (If not? Map to a different space and linearize-*kernel machines*)

Support vector machines (SVM)

find hyperplane with maximal distance between any points
•closest points define the plane (support vectors)

SVM example - cat or dog?

Most dog-like

Most cat-like

Cats

Dogs

Machine learning for dummies

- many other algorithms for classifying/clustering
 - learn the concepts and what you can tweak
- let others do the hard work
 - libraries: Shogun, libsvm, scikit-learn
 - Apache Mahout: works with Hadoop!

kaggle

- outsource to Kaggle...

 more in the next lecture

Thank you