
HUMAN-GENERATED SECRET DATA

Joseph Bonneau
jcb82@cl.cam.ac.uk

Computer Laboratory

Security and Human Behaviour

Cambridge, UK

June 29, 2010

Joseph Bonneau (University of Cambridge) Human secrets June 29, 2010 1 / 15

jcb82@cl.cam.ac.uk


The Simple English guide to human-generated secrets

1 Computers try to tell humans apart by asking for secret memories.
They can ask for other things, but those are very expensive.

2 Many computer scientists use something called “entropy” to
measure security for this secret data, but there are a lot of
mathematical equations which say this is a bad idea.

3 Things that good people can remember aren’t unpredictable
enough to prevent bad people from guessing them.

4 Computer scientists have never studied how people pick banking
PINs, but people are very bad at picking 4-digit numbers for other
things, and so they might be bad at picking banking PINs too.
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Two-factor authentication remains far too expensive
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Measuring Security Against Guessing

Which is “harder” to guess:

Surname of randomly chosen Internet user

H1(surname) = 16.2 bits

Randomly chosen 4-digit PIN

H1(PIN) = 13.3 bits
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Shannon Entropy

H1(X ) = −
N∑

i=1

pi lg pi

H1(surname) = 16.2 bits
H1(PIN) = 13.3 bits

Meaning: Expected number of queries “Is X ∈ S?” for arbitrary
subsets S ⊆ X needed to guess X . (Source-Coding Theorem)
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Guessing Entropy

G(X ) = E
[
#guesses(X

R← X )
]

=
N∑

i=1

pi · i

G(surname) ≈ 137000 guesses
G(PIN) ≈ 5000 guesses

Meaning: Expected number of queries “Is X = xi?” for
i = 1,2, . . . ,N (optimal sequential guessing)
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Alternate attack models not captured

What if we only want a 50% chance of breaking a given account?
PIN: ≈ 5000 guesses
Surname: ≈ 8000 guesses
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Alternate attack models not captured

What if we only want a 10% chance of breaking a given account?
PIN: ≈ 1000 guesses
Surname: ≈ 89 guesses
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Need specific metrics for attackers who may give up

Marginal Guesswork
Give up after reaching probability α of success:

µα(X ) = min

j ∈ [1,N]

∣∣∣∣∣∣
j∑

i=1

pi ≥ α


Can convert to bitstrength: µ̃α(X ) = lg
(

µα(X )
α

)
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Example

U16 X65

H1 4 4
G̃ 4 5.1
µ̃ 1

2
4 1

µ̃ 3
4

4 5.46
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The complete picture
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Some theorems to wake you up in the morning

Theorem (adapted from Pliam)
Given any m > 0, β > 0 and 0 < α < 1, there exists a distribution X
such that µ̃α(X ) < H1(X )−m and λ̃β(X ) < H1(X )−m.

Theorem (adapted from Boztaş)
Given any m > 0, β > 0 and 0 < α < 1, there exists a distribution X
such that µ̃α(X ) < G̃(X )−m and λ̃β(X ) < G̃(X )−m.

Theorem (from [BJM] FC 2010 paper)
Given any m > 0, α1 > 0, and α2 > 0 with 0 < α1 < α2 < 1, there
exists a distribution X such that µ̃α1(X ) < µ̃α1(X )−m.
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Comparing human-memorable secrets
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RockYou loses a list of 32 M passwords
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RockYou loses a list of 32 M passwords

290729 123456
79076 12345
76789 123456789
59462 password
49952 iloveyou
33291 princess
21725 1234567
20901 rockyou
20553 12345678
16648 abc123
16227 nicole
15308 daniel
15163 babygirl
14726 monkey
14331 lovely
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RockYou loses a list of 32 M passwords

49952 iloveyou
13134 iloveu

5589 iloveme
3998 iloveyou2
3700 iloveyou1
2042 iloveu2
2007 ilovehim
1510 ilovejesus
1441 ilovegod
1358 iloveyou!
1096 iloveu1
1061 iloveme1

922 ilovemyself
908 iloveboys
894 ilovechris
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RockYou loses a list of 32 M passwords

830 lovesucks
680 lifesucks
166 schoolsucks
101 thissucks

71 luvsucks
58 sucks
43 mylifesucks
33 aolsucks
30 emosucks
23 bebosucks
19 l0vesucks
18 skoolsucks
16 love sucks
16 worksucks
15 lov3sucks
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RockYou loses a list of 32 M passwords

28 joeishot
11 joeismine
10 joeisfit

9 joeissexy
8 joeiscool
6 joeisgay
6 joeishot1
4 joeis#1
3 joeis1
3 joeisa
3 joeisastud
3 joeiscool1
3 joeissexy1
3 joeissohot
3 joeisthebest
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RockYou loses a list of 32 M passwords

1023 fresita
1023 mookie
1022 leelee
1021 tequieromucho
1020 giovanni
1020 harry
1018 celticfc
1018 ranger
1017 austin1
1017 newcastle
1017 preston
1017 snuggles
1017 tagged
1016 erica
1016 sniper
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RockYou loses a list of 32 M passwords
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How bad might user-chosen PINs be?

grep -E "([^0-9]|^)[0-9]{4}([^0-9]|$)" < rockyou.txt

Joseph Bonneau (University of Cambridge) Human secrets June 29, 2010 17 / 15



How bad might user-chosen PINs be?
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How bad might user-chosen PINs be?
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How bad might user-chosen PINs be?
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Steering users away from the easiest choices
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