HUMAN-GENERATED SECRET DATA

Joseph Bonneau

jcb82@cl.cam.ac.uk

Computer Laboratory

Security and Human Behaviour Cambridge, UK June 29, 2010

The Simple English guide to human-generated secrets

Computers try to tell humans apart by asking for secret memories. They can ask for other things, but those are very expensive.

Two-factor authentication remains far too expensive

The Simple English guide to human-generated secrets

- Computers try to tell humans apart by asking for secret data. They can ask for other things, but these are very expensive.
- Many computer scientists use something called "entropy" to measure security for this secret data, but there are a lot of mathematical equations which say this is a bad idea.

Which is "harder" to guess:

• Surname of randomly chosen Internet user

Randomly chosen 4-digit PIN

Which is "harder" to guess:

- Surname of randomly chosen Internet user
 - *H*₁(surname) = **16.2 bits**
- Randomly chosen 4-digit PIN
 - *H*₁(PIN) = **13.3 bits**

$$H_1(\mathcal{X}) = -\sum_{i=1}^N p_i \lg p_i$$

- *H*₁(surname) = **16.2 bits**
- *H*₁(PIN) = **13.3 bits**
- Meaning: Expected number of queries "Is X ∈ S?" for arbitrary subsets S ⊆ X needed to guess X. (Source-Coding Theorem)

$$G(\mathcal{X}) = E\left[\#_{ ext{guesses}}(X \stackrel{R}{\leftarrow} \mathcal{X})
ight] = \sum_{i=1}^{N} p_i \cdot i$$

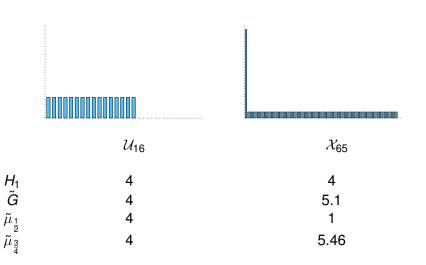
- $G(surname) \approx$ **137000 guesses**
- $G(PIN) \approx$ 5000 guesses
- Meaning: Expected number of queries "Is $X = x_i$?" for i = 1, 2, ..., N (optimal sequential guessing)

What if we only want a 50% chance of breaking a given account?

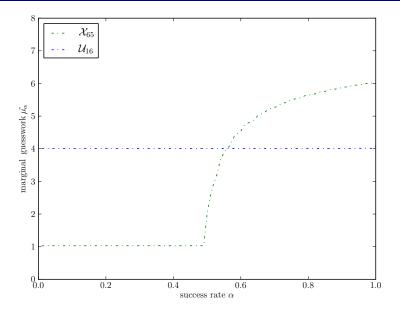
- PIN: \approx 5000 guesses
- Surname: \approx 8000 guesses

What if we only want a 10% chance of breaking a given account?

- PIN: \approx 1000 guesses
- Surname: \approx 89 guesses

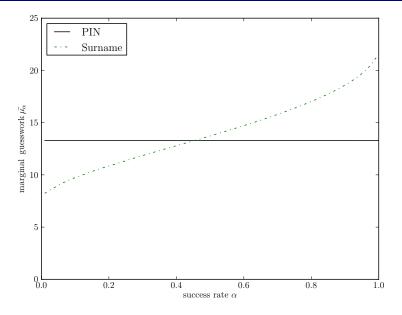

Need specific metrics for attackers who may give up

Marginal Guesswork


Give up after reaching probability α of success:

$$\mu_{\alpha}(\mathcal{X}) = \min\left\{j \in [1, N] \left| \sum_{i=1}^{j} p_{i} \ge \alpha\right\}\right\}$$

• Can convert to **bitstrength**: $\tilde{\mu}_{\alpha}(\mathcal{X}) = \lg \left(\frac{\mu_{\alpha}(\mathcal{X})}{\alpha} \right)$



The complete picture

Joseph Bonneau (University of Cambridge)

The complete picture

Theorem (adapted from Pliam)

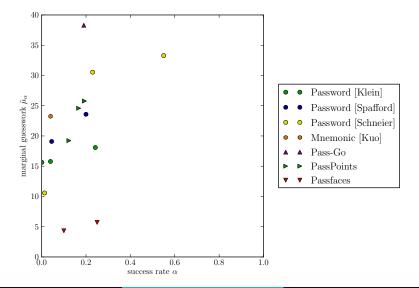
Given any m > 0, $\beta > 0$ and $0 < \alpha < 1$, there exists a distribution \mathcal{X} such that $\tilde{\mu}_{\alpha}(\mathcal{X}) < H_1(\mathcal{X}) - m$ and $\tilde{\lambda}_{\beta}(\mathcal{X}) < H_1(\mathcal{X}) - m$.

Theorem (adapted from Boztaş)

Given any m > 0, $\beta > 0$ and $0 < \alpha < 1$, there exists a distribution \mathcal{X} such that $\tilde{\mu}_{\alpha}(\mathcal{X}) < \tilde{G}(\mathcal{X}) - m$ and $\tilde{\lambda}_{\beta}(\mathcal{X}) < \tilde{G}(\mathcal{X}) - m$.

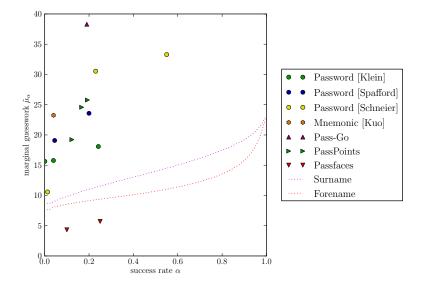
Theorem (from [BJM] FC 2010 paper)

Given any m > 0, $\alpha_1 > 0$, and $\alpha_2 > 0$ with $0 < \alpha_1 < \alpha_2 < 1$, there exists a distribution \mathcal{X} such that $\tilde{\mu}_{\alpha_1}(\mathcal{X}) < \tilde{\mu}_{\alpha_1}(\mathcal{X}) - m$.


The Simple English guide to human-generated secrets

- Computers try to tell humans apart by asking for secret data. They can ask for other things, but these are very expensive.
- 2 Many computer scientists use something called "entropy" to measure security for this secret data, but there are a lot of mathematical equations which say this is a bad idea.
- Things that good people can remember aren't unpredictable enough to prevent bad people from guessing them.

Comparing human-memorable secrets



Comparing human-memorable secrets

Joseph Bonneau (University of Cambridge)

Comparing human-memorable secrets

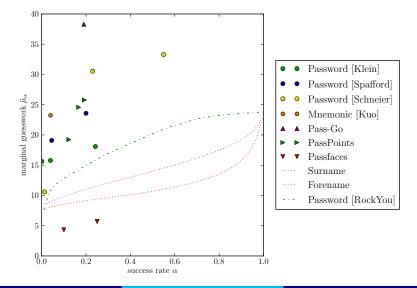
Human secrets

The Simple English guide to human-generated secrets

- Computers try to tell humans apart by asking for secret data. They can ask for other things, but these are very expensive.
- Many computer scientists use something called "entropy" to measure security for this secret data, but there are a lot of mathematical equations which say this is a bad idea.
- Things that good people can remember aren't unpredictable enough to prevent bad people from guessing them.
- People at a gaming website called RockYou got pwned. Researchers now have many passwords to study.

rockyou

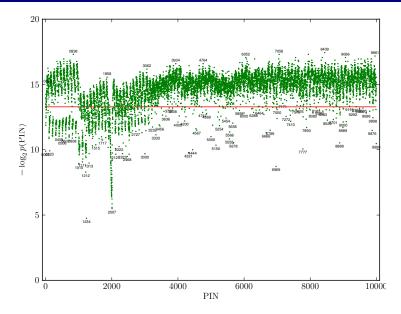
Copyright (c) 2008 RockYou | Member of the Alloy Online Advertising Network FAQ / Help | MySpace Profile Tips | Prince) | Terms of Use | FaceBook Advertisers & Developms | OpenSocial | About Us English | Pdy | Expande | Pontugués | mmmber

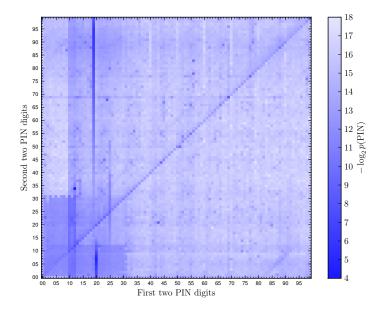

290729	123456
79076	12345
76789	123456789
59462	password
49952	iloveyou
33291	princess
21725	1234567
20901	rockyou
20553	12345678
16648	abc123
16227	nicole
15308	daniel
15163	babygirl
14726	monkey
14331	lovely

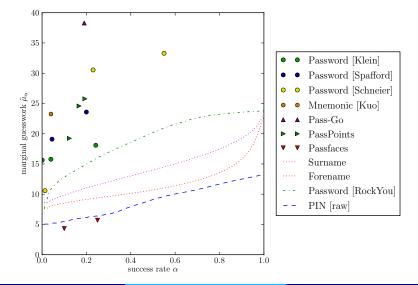
49952	iloveyou
13134	iloveu
5589	iloveme
3998	iloveyou2
3700	iloveyou1
2042	iloveu2
2007	ilovehim
1510	ilovejesus
1441	ilovegod
1358	iloveyou!
1096	iloveu1
1061	iloveme1
922	ilovemyself
908	iloveboys
894	ilovechris

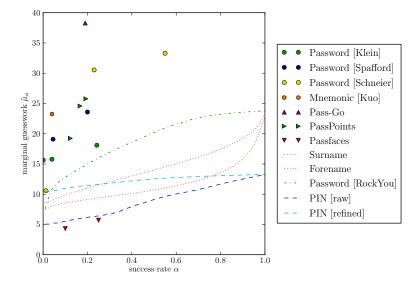
830	lovesucks
680	lifesucks
166	schoolsucks
101	thissucks
71	luvsucks
58	sucks
43	mylifesucks
33	aolsucks
30	emosucks
23	bebosucks
19	10vesucks
18	skoolsucks
16	love sucks
16	worksucks
15	lov3sucks

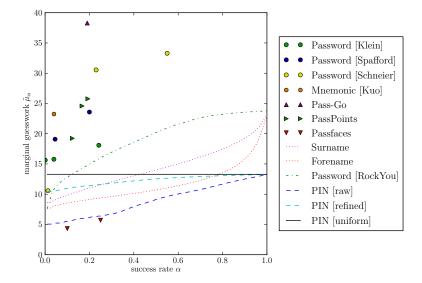
- 28 joeishot
- 11 joeismine
- 10 joeisfit
 - **9** joeissexy
 - 8 joeiscool
 - 6 joeisgay
 - 6 joeishot1
 - 4 joeis#1
 - **3** joeis1
 - **3** joeisa
 - 3 joeisastud
 - **3** joeiscool1
 - **3** joeissexy1
 - **3** joeissohot
 - **3** joeisthebest

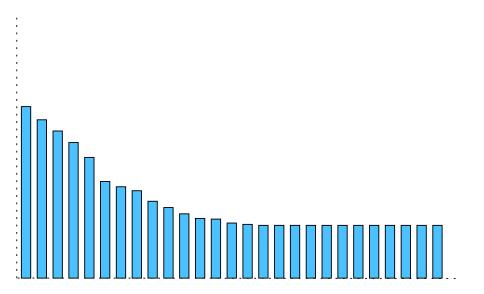

1023	fresita
1023	mookie
1022	leelee
1021	tequieromucho
1020	giovanni
1020	harry
1018	celticfc
1018	ranger
1017	austin1
1017	newcastle
1017	preston
1017	snuggles
1017	tagged
1016	erica
1016	sniper

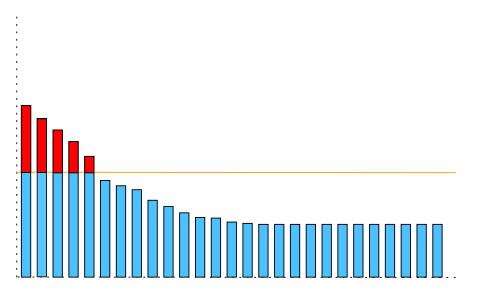



The Simple English guide to human-generated secrets

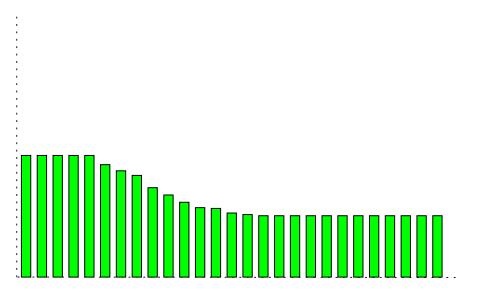

- Computers try to tell humans apart by asking for secret data. They can ask for other things, but these are very expensive.
- Many computer scientists use something called "entropy" to measure security for this secret data, but there are a lot of mathematical equations which say this is a bad idea.
- Things that good people can remember aren't unpredictable enough to prevent bad people from guessing them.
- People at a gaming website called RockYou got pwned. Researchers now have many passwords to study.
- Computer scientists have never studied how people pick banking PINs, but people are very bad at picking 4-digit numbers for other things, and so they might be bad at picking banking PINs too.


grep -E "([^0-9]|^)[0-9]{4}([^0-9]|\$)" < rockyou.txt




Joseph Bonneau (University of Cambridge)

Human secrets


Steering users away from the easiest choices

Steering users away from the easiest choices

Steering users away from the easiest choices

