Privacy Aspects of Social Graphs

Joseph Bonneau
Stanford Security Seminar, July 142009

University of Cambridge Computer Laboratory

Social Context And The Web

Everything's Better With Friends...

- "Hyper-presence" of friends
- "networked public spaces"
- All web activity will have social context

Mike Barash wife just made pancakes and toast...not a bad way to start the day. and it appears we have power again. which is nice.
about an hour ago • Comment • Like

Griffin Barash is day 2 ... Options baby!
[8) 3 hours ago • Comment • Like

Ryan van Weezel at 2:27pm July 7
good luck... better have a red bull at lunch!

Adam Drewry at $4: 36 \mathrm{pm}$ July 7
that sounds like a dream of a day

```
Write a comment..
```

Tyler Redlitz is celebrating his bday with beautiful weather in NYC!
5 hours ago • Comment • Like
The Wu likes this.

[^0]
Facebook Is Becoming A Second Internet...

Function	Internet version	Facebook version
Page Markup	HTML, JavaScript	FBML
DB Queries	SQL	FBQL
Email	SMTP	FB Mail
Forums	Usenet, etc.	FB Groups
Instant Messages	XMPP	FB Chat
News Streams	RSS	FB Stream
Authentication	OpenID	FB Connect
Photo Sharing	Flickr, etc.	FB Photos
Video Sharing	YouTube, etc.	FB Video
Blogging	Blogger, etc.	FB Notes
Microblogging	Twitter, etc.	FB Status Updates
Micropayment	Peppercoin, etc.	FB Points
Event Planning	E-Vite	FB Events
Classified Ads	craigslist	FB Marketplace

Parallel Trend: The Internet is Becoming Social

"Given sufficient funding, all web sites expand in functionality until users can add each other as friends"

You Tube

nall Ros

flickr

Windows Live Spaces

UNIVERSITY OF
8 O O O Y E A R S
CAMBRIDGE
I $209 \sim 2009$

"Traditional" Social Network Analysis

- Performed by sociologists, anthropologists, etc. since the 70's
- Use data carefully collected through interviews \& observation
- Typically < 100 nodes
- Complete knowledge
- Links have consistent meaning
- All of these assumptions fail badly for online social network data

Traditional Graph Theory

- Nice Proofs
- Tons of definitions
- Ignored topics:
- Large graphs
- Sampling
- Uncertainty

Figure 98. Geographic Map: The Königsberg Bridges.

HAMILTON CYCLE ON DE BRUIJN GRAPH

Models Of Complex Networks From Math \& Physics

Many nice models

- Erdos-Renyi
- Watts-Strogatz
- Barabasi-Albert

Social Networks properties:

- Power-law
- Small-world
- High clustering coefficient

[^1]
Real social graphs are complicated!

When In Doubt, Compute!

We do know many graph algorithms:

- Find important nodes
- Identify communities
- Train classifiers
- Identify anomalous connections

Major Privacy Implications!

$\begin{array}{ll}\text { UNIVERSITYOF } & 8 \text { O O Y E AR S } \\ \text { CAMBRIDGE } \\ \text { I } 200 & \text { ~ } 2009\end{array}$

Privacy Questions

- What can we infer purely from link structure?

Privacy Questions

- What can we infer purely from link structure?

A surprising amount!

- Popularity
- Centrality
- Introvert vs. Extrovert
- Leadership potential

Privacy Questions

- If we know nothing about a node but it's neighbours, what can we infer?

Privacy Questions

- If we know nothing about a node but it's neighbours, what can we infer?

A lot!

- Gender
- Political Beliefs
- Location
- Breed?

Privacy Questions

- Can we anonymise graphs?

Privacy Questions

- Can we anonymise graphs? Not easily...
- Seminal result by Backstrom et al.: Attack of attack needs just 7 nodes
- Can do even better given user's complete neighborhood
- Also results for correlating users across networks
- Developing line of research...

Privacy Questions

- What can we infer if we "compromise" a fraction of nodes?

Privacy Questions

- What can we infer if we "compromise" a fraction of nodes?

A lot...

- Common theme: small groups of nodes can see the rest
- Danezis et al.
- Nagaraja
- Korolova et al.
- Bonneau et al.

Privacy Questions

- Can we defend against crawling in a sound way? Work in progress!

Privacy Questions

- What if we get a subset of neighbours for all nodes?

Privacy Questions

- What if we get a subset of k neighbours for all nodes?

Emerging question for many social graphs

- Facebook and online SNS
- Mobile SNS

A Quietly Introduced Feature...

Public Search Listings, Sep 2007

Public Search Listings

- Unprotected against crawling
- Indexed by search engines
- Opt out—but most users don't know it exists!

Utility

Sign Up
Sign Up
Sign up for Facebook to connect with Joe Bonneau.

Joe Bonneau

Add Joe Bonneau as Friend \| Send Joe Bonneau a Message | View Joe Bonneau's Friends Here are some of Joe Bonneau's friends:

Joe Bonneau
 is on Facebook.

Sign up for Facebook to connect with Joe Bonneau.

Sign Up

It's free and anyone can join. Already a Member? Log in to contact Joe Bonneau.
Not the Joe Bonneau you were looking for? Search more

Entity Resolution

Utility

Promotion via Network Effects

Legal Status

"Your name, network names, and profile picture thumbnail will be available in search results across the Facebook network and those limited pieces of information may be made available to third party search engines. This is primarily so your friends can find you and send a friend request."

-Facebook Privacy Policy

[^2]
Legal Status

facebook

Sign up for Facebook to connect with Josh Morris.

Not the Josh Morris you were looking for? Search more »

Josh Morris

Add Josh Morris as Friend | Send Josh Morris a Message | View Josh Morris's Friends Here are some of Josh Morris's friends:

Josh Morris is a fan of:
Celebrities / Public
Figures
Bruno
"The Dude"
Karl Marx, philosopher
San Diego
Iraq Veterans Against
the War

Music

Metallica
System of a Down
Tool Band
Les Pauls

JACK DANIEL`S In-N-Out

Josh Morris

 is on Facebook.Sign up for Facebook to connect with Josh Morris.

Sign Up
It's free and anyone can join. Already a Member?
Login to contact Josh Morris.

Much More Info Now Included...

Legal Status

At Advocates of Communism

Global

Basic Info

Type:
Description:
Common Interest - Politics
The working class has nothing to lose but their chains. They have the world to win.

We have seen above that the first step in the revolution by the working class is to raise the proletariat to the position of ruling class to win the battle of democracy.

The proletariat will use its political supremacy to wrest, by degree, all capital from the bourgeoisie, to centralize all instruments of production in the hands of the state, i.e., of the proletariat organized as the ruling class; and to increase the total productive forces as rapidly as possible

Of course, in the beginning, this cannot be effected except by means of despotic inroads on the rights of property, and on the conditions of bourgeois production; by means of measures, therefore, which appear economically insufficient and untenable, but which, in the course of the movement, outstrip themselves, necessitate further inroads upon the old social order, and are unavoidable as a means of entirely revolutionizing the mode of production.
These measures will, of course, be different in different countries.
Nevertheless, in most advanced countries, the following will be pretty generally applicable.

1. Abolition of property in land and application of all rents of land to public purposes.
2. A heavy progressive or graduated income tax.

Members
Displaying 8 of 3,513 members

Logan Revolution Party
 Will
 Official Representative of Utopia Party
 Adem
 Vice Repres
 Public Group Pages Recently Added

Group Type

This is an open group. Anyone can join and invite others to join.

Officers

Sim
Party Philosopher
Nils
Questioner of Party Authority
Aaron
Official Representative of
Anti-Revisionist Socialism
Aziz
Official Representative of U.C.Y
William
Official Representative of Moderate Trotskyist Party
Pmk
Official Representative of Communist

Obvious Attack

- Initially returned new friend set on refresh
- Can find all n friends in $\mathrm{O}(n \cdot \log n)$ queries
- The Coupon Collector's Problem
- For 100 Friends, need 65 page refreshes
- As of Jan 2009, friends fixed per IP address

Fun with Tor

UK

Germany

USA

Australia

Attack Scenario

- Spider all public listings
- Our experiments crawled 250 k users daily
- Implies ~800 CPU-days to recover all users

Abstraction

- Take a graph $G=<V, E>$
- Randomly select k out-edges from each node
- Result is a sampled graph $G_{k}=\left\langle V, E_{k}\right\rangle$
- Try to approximate $f(G) \approx f_{\text {approx }}\left(G_{k}\right)$

Approximable Functions

- Node Degree
- Dominating Set
- Betweenness Centrality
- Path Length
- Community Structure

Experimental Data

- Crawled networks for Stanford, Harvard universities
- Representative sub-networks

	\# Users	Mean d	Median d
Stanford	15043	125	90
Harvard	18273	116	76

Back To Our Abstraction

- Take a graph $G=<V, E>$
- Randomly select k out-edges from each node
- Result is a sampled graph $G_{k}=\left\langle V, E_{k}\right\rangle$
- Try to approximate $f(G) \approx f_{\text {approx }}\left(G_{k}\right)$

Estimating Degrees

- Convert sampled graph into a directed graph
- Edges originate at the node where they were seen
- Learn exact degree for nodes with degree $<k$
- Less than k out-edges
- Get random sample for nodes with degree $\geq k$
- Many have more than k in-edges

Estimating Degrees

Average Degree: 3.5

W. CAMBRIDGE I $209 \sim 2009$

Estimating Degrees

Sampled with $k=2$

圃图 UNIVERSITYOF 8 o o Y E A R S
CAMBRIDGE I $209 \sim 2009$

Estimating Degrees

Degree known exactly for one node

Estimating Degrees

Naïve approach: Multiply in-degree by average degree / k

Estimating Degrees

Raise estimates which are less than k

Estimating Degrees

Nodes with high-degree neighbors underestimated

Estimating Degrees

Iteratively scale by current estimate / k in each step

Estimating Degrees

After 1 iteration

Estimating Degrees

Normalise to estimated total degree

Estimating Degrees

Convergence after n > 10 iterations

Estimating Degrees

- Converges fast, typically after 10 iterations
- Absolute error is high-38\% average
- Reduced to 23% for nodes with $d \geq 50$
- Still accurately can pick high degree nodes

Aggregate of x highest-degree nodes

Comparison of sampling parameters

Dominating Sets

- Set of Nodes $D \subseteq V$ such that
D u Neighbours(D) $=V$
- Set allows viewing the entire network
- Also useful for marketing, trend-setting

Dominating Sets

Trivial Algorithm: Select High-Degree Nodes in Order

Dominating Sets

In fact, finding minimal dominating set is NP-complete

Dominating Sets

Greedy Algorithm: select for maximal coverage

Dominating Sets

Greedy Algorithm: select for maximal coverage

Dominating Sets

Shown to perform adequately in practice

Works Well on Sampled Graph

Insensitive to Sampling Parameter!

Centrality

- A measure of a node's importance
- Betweenness centrality:

$$
C_{B}(v)=\sum_{s \neq v \neq t \in V} \frac{\sigma_{s t}(v)}{\sigma_{s t}}
$$

- Measures the shortest paths in the graph that a particular vertex is part of

Centrality

Community Detection

- Goal: Find highly-connected sub-groups
- Measure success by high modularity:

$$
Q=\frac{1}{2 m} \sum_{v, w}\left[A_{v w}-\frac{d(v) d(w)}{2 m}\right]
$$

- Ratio of intra-community edges to random
- Normalised to be between -1 and 1

Community Detection

-Clausen et. al 2004 - find maximal modularity in $\mathrm{O}\left(n \mathrm{gl}^{2} n\right)$
-Track marginal modularity, update neighbours on each merge

Community Detection

$\begin{array}{ll}\text { UNIVERSITYOF } & 8 \text { o o Y E A R S } \\ \text { CAMBRIDGE } \\ \text { I } 209 \sim 2009\end{array}$

Community Detection

$Q=0.08$

Community Detection

$$
Q=0.14
$$

CAMBRIDGE I $209 \sim 2009$

Community Detection

$Q=0.175$

图图 UNIVERSITYOF 8 o O Y E A R S
CAMBRIDGE I 2 O $9 \sim 2009$

Community Detection

$$
\mathrm{Q}=0.2125
$$

Community Detection

$Q=0.2225$

娄滕 UNIVERSITYOF 8 O O Y E A R S
CAMBRIDGE I 2 O $9 \sim 2$ OO 9

Community Detection

UNIVERSITYOF 8 OO Y E AR S
CAMBRIDGE I $209 \sim 2009$

Conclusions

- k-sampling of each edge gives away a lot

Conclusions

- k-sampling of each edge gives away a lot

Can we fix it?

Regular subgraph extraction

Can we find a 2-regular subgraph?

Regular subgraph extraction

Step 1: Remove edges, weight by smallest attached node

Regular subgraph extraction

Step 1: Remove edges, weight by smallest attached node

Regular subgraph extraction

Step 1: Remove edges, weight by smallest attached node

Regular subgraph extraction

Step 1: Remove edges, weight by smallest attached node

Regular subgraph extraction

Step 1: Remove edges, weight by smallest attached node

Regular subgraph extraction

Step 2: Remove further edges to force all degrees $\leq k$

Regular subgraph extraction

Step 3: Randomly add edges between pairs of edges below k

Regular subgraph extraction

Step 3: Randomly add edges between pairs of edges below k

Regular subgraph extraction

(note: producing a cycle is atypical!)

How well have we done?

- Recall original goal of showing k-sample
- Promotion, identification
- Two measures:
- Precision: Percentage of edges shown which are real
- Recall: Percentage of real edges which are shown (normalise recall to showing a max of k per node)

How well have we done?

- Recall original goal of showing k-sample
- Promotion, identification
- Two measures:
- Precision: Percentage of edges shown which are real
- Recall: Percentage of real edges which are shown (normalise recall to showing a max of k per node)

Regular subgraph extraction

	Original	Step 1	Step 2	Step 3
Precision	1	1	1	0.90
Recall	1	1	0.99	0.99

Regular subgraph extraction

CAMBRIDGE I 2 O $9 \sim 2009$

Drawbacks

- Requires complete graph knowledge
- Graph frequently changes!

Drawbacks

- Requires complete graph knowledge
- Graph frequently changes!

Alternative: Random Sampling

- Weight selection towards low-degree neighbours
- Computable locally, incrementally
- (much weaker...)

Random Sampling

图縲UNIVERSITYOF 8 O O Y E A R S
CAMBRIDGE I 2 O $9 \sim 2$ OO 9

Caveats

- Can gain some protection against degree estimation
- With a lot of work
- Doesn't prevent inference of dominating sets, centrality!

Conclusions

- Availability of social graphs raises serious privacy concern
- The blueprint of our society...
- Very fragile to many attacks
- Right now, we're choosing utility over privacy

Thank You!
jcb82@cl.cam.ac.uk

[^0]: Write a comment...

[^1]:
 CAMBRIDGE $1209 \sim 2009$

[^2]: NNIVERSITYOF 8 o o y E A R S

