
Alice and Bob’s life stories

Cryptographic communication using shared experiences

Joseph Bonneau

University of Cambridge Computer Laboratory
jcb82@cl.cam.ac.uk

Abstract. We propose a protocol for confidential one-way communi-
cation between two parties who know each other well using only pre-
existing knowledge from their shared life experience. This could enable,
for example, lovers or close friends to communicate without prior key
exchange. Our system uses a flexible secret-sharing mechanism to accom-
modate personal knowledge of variable guessing resistance and memora-
bility with reasonable overhead in terms of computation and storage.

1 Introduction

Traditional cryptographic communication relies on artificially-created high en-
tropy random strings as secret keys. In some cases, two parties who know each
other well may already possess enough secret knowledge in the form of shared
experiences to enable secure communication. For example, a husband and wife
will both remember many details of their courtship that no other parties know,
while a group of siblings can recall minutia of their childhood which are unknown
outside of the family.

We explore cryptographic communication using this naturally-shared secret
knowledge in situations where it is otherwise not possible to share a crypto-
graphic key. Our goal is to design a secure protocol for encryption over a one-
way communication channel. Abstractly, Alice wishes to send Bob a message,
and she can only use her shared experiences with Bob to ensure confidentiality
and integrity of the message. This will be achieved with a secure protocol for
converting answers to personal questions into a high-entropy key suitable for
conventional encryption.

We assume that Alice must send her message urgently without actually meet-
ing Bob to exchange key material. This may be because the message is being
sent for future decryption by Bob. For example, Alice may be writing a will that
she wants to keep hidden in her lifetime. By encrypting it using personal secrets
shared with Bob, only he can read it after her death but he does not need to be
made aware of it by an explicit key transfer. Another example is encryption of
backup key material intended for oneself in the future, in the case of acciden-
tally losing a stored key or forgetting a password. This is the example which has
motivated previous research [1,2], though we consider this example as a special
case of a more general concept.
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2 Related work

2.1 Personal knowledge questions

Most experience in designing personal-knowledge questions (PKQs) has been in
the context of backup authentication in the case of forgotten passwords. The
classic example is a bank which requires a user to enter his or her mother’s
maiden name to reset a password or PIN. Just wrote a survey of PKQs in the
context of web re-authentication which enumerated the many different design
parameters from a usability standpoint [3].

Our application is much more demanding than online authentication, where
it is possible to limit the number of guess an adversary can make. Still, it will be
critical to have some understanding of the security and memorability of PKQs,
since they are our primary means of turning shared knowledge into cryptographic
keys. The few formal studies conducted have found that questions typically used
in practice have very poor security characteristics. Rabkin surveyed PKQ sys-
tems used in real banking websites, and reported that a large number of questions
suffered from either poor usability or vulnerability to mining data available on
the web [4]. An earlier study by Griffith and Jakobsson discovered exactly the
mother’s maiden name of over 15% of Texas residents using publicly available
data [5]. Concurrent research in the field of social network security has found
that simply knowing a victim’s list of friends can enable inference of private
information such as gender or political beliefs [6,7], making the secure choice of
PKQs difficult.

Jakobsson et al proposed “preference-based authentication” to decrease the
reliance on publicly available information by using questions such as “do you like
country music?” [8]. They later refined their system and conducted extensive user
studies [9] and found that preferences are much more difficult to mine from the
Internet, while still being highly memorable.

2.2 Password backup systems

We are inspired by two previously-proposed schemes for cryptographically secure
password backup. Ellison et al. proposed a scheme in 1999 for encryption using
“Personal Entropy” [1]. This system involved hashing a set of answers to stored
PKQs into a set of shares of a secret, and using an (n, t)-threshold secret-sharing
scheme to recover a master key.

Frykholm and Juels proposed another scheme in 2001 [2], based on fuzzy
commitment, which relied on mapping a user’s set of answer to PKQs to the
message space of an error-correcting code, then decoding to recover the mas-
ter key, which was chosen at random from the space of valid codewords. This
scheme is provably secure (under certain assumptions about the coding system)
in that an attacker’s probability of successfully guessing the correct master key
is bounded by the min-entropy of the set of possible answers.
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3 Desired properties

Either of the password backup schemes describe in Section 2.2 could be adapted
for our desired scenario of communication between two different parties. How-
ever, we would like to add several new features.

3.1 Variable security of questions

Previous schemes haven’t been designed to combine PKQs of different strength
levels. We may wish to encrypt based on the answers to several questions whose
answer is a name (e.g. “What was our neighbour’s oldest son’s name growing
up?”) in addition to many true-false or multiple-choice questions, which are
easier to create but also easier to guess. Previous schemes map all questions into
equally sized blocks to make design simpler. We will design for questions with
answer-spaces of different sizes, considering this a desired property for a secure
and usable system.

3.2 Variable memorability of questions

Another inflexibility in the previous schemes is the assumption that all answers
have an equally likely chance of being forgotten or not known at the time of
decryption. This is reflected in that errors in the response to any question are
treated equally by the error correction scheme. We wish to efficiently accom-
modate questions whose recall probabilities vary. For example, a sender may be
close to 100% certain that the recipient can answer a certain question, and thus
not provide any error tolerance for this question and force an adversary to guess
it correctly. Similarly, some questions may be known to be likely to be forgotten,
and will require extra error tolerance to ensure the system is usable.

3.3 Key strengthening

Since we are limited by the ability of our user interface to extract memorable and
unpredictable answers, we can use key strengthening [10] to increase the difficulty
of brute-force guessing of possible answers. This is simple in our application since
our system already consists of converting answers to PKQs into a master key.
We will add the extra step of hashing our pre-master key 2s times before it
is used to decrypt message content. This effectively adds s bits of work for an
attacker attempting to guess the correct answers. For s ∼ 10–20, it will add only
a small amount of slowdown to decryption using a desktop computer, which is
acceptable since our system is expected to be used only in rare circumstances.

3.4 Sacrificed properties

In order to achieve the above properties, we are willing to sacrifice several perfor-
mance properties, considering our system to be a rarely-used emergency protocol.
In particular, we are willing to add considerable storage overhead to an encrypted
message, and slowdown in encrypting and decrypting. We will examine a sample
requirement of storage and slowdown in Section 4.5.



192 Joseph Bonneau

4 Proposed system

4.1 Protocol description

Encryption under our system will consist of choosing a set Q of questions
{q0, . . . , qm}, and providing a corresponding set of answers A = {a0, . . . , am}. We
then randomly pick a pre-master key KP, and compute the master encryption
key according to our desired level of key-strengthening:

KM = H2s (KP) (1)

The critical step in our protocol which is different from previous systems is
that encryption will require enumerating subsets of A which allow for recovery
of KM. We will not limit the system to subsets of a specific size, but allow for
total flexibility. To achieve this, encryption will require explicitly listing subsets
Ai ∈ A along with decryption information. We denote the set of sets of acceptable
answers as

A∗ = {Ai ∈ A : knowledge of Ai shall enable decryption} (2)

We will use a trivial secret-sharing scheme to accomplish this, namely, using
exclusive-or to combine hashes of answers to derive a subset key for each Ai ∈ A∗:

Ki =
⊕

aj∈Ai

H (aj ||j) (3)

We include the question number j in each hash to force the adversary to
search over all answers to all questions in case some answers may possible for
multiple questions. For each subset key Ki we then compute the offset Oi which
allows us to recompute the pre-master key:

Oi = KP ⊕Ki (4)

To send a message M , Alice transmits:

AEKM
(M ||A), Q, O (5)

We use a standard symmetric-key authenticated encryption function AE,
such as AES-GCM, to ensure confidentiality and integrity. We note that Alice
must transmit the offset Oi for every answer set Ai ∈ A∗. We will examine
the storage requirements in a sample deployment in Section 4.5. We also note
that Alice appends the correct answers to her questions to the plaintext before
encrypting, this will be discussed in Section 6.1.

Given correct receipt of the information from Equation 5, Bob will examine
the questions Q and provide his own answers Ã, which may of course differ from
the correct answers. The decryption software will then search through subsets
Ãi ∈ Ã∗, for each subset computing:
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K̃ = H2s

Oi ⊕
⊕

aj∈Ãi

H (aj ||j)

 (6)

If Bob’s subset of answers is correct, that is, Ãi = Ai, then this decryption
will successfully invert the decryption of Equations 4 and 3, and Bob will have
recovered KM. Any incorrect answer within Ãi will produce a pseudo-random
K̃ 6= KM.

Superficially, the encryption software must perform a search over all sets in
Ã∗, as no information is provided about which answer was specified incorrectly.
We hope that, in practice, there will be a manageable number of such subsets.
A very helpful interface feature, however, is to provide a “don’t know” answer
for Bob, so that the decryption software can avoid searching over subsets known
to contain a wrong answer.

4.2 Difficulty of an attack

The attacker receives the set of questions Q and must go about trying to guess
enough of the answers to reconstruct the key. We assume that for each question,
the sender can estimate a reasonable lower bound on the difficulty of an adversary
guessing the correct answer. Specifically, we estimate the min-entropy H∞ of
each question, which is equal to − lg(pmax), where pmax is an attacker’s estimated
probability of the most likely answer.1 We denote Hi

∞ for the min-entropy of
question qi.

Given our use of secret-sharing subsets, the attacker doesn’t need to guess
all answers successfully, only the answers in one subset A′ ∈ A∗. There are many
such subsets which will work, but the attacker can be assumed to target the
weakest subset, that is, the subset Aattack which minimises:

Hattack =
∑

ai∈Aattack

Hi
∞ (7)

The metric Hattack can be thought of as modelling an imaginary attacker
who has an infinite supply of different messages sent from Alice to Bob, and will
only guess the most likely answers to the weakest sufficient subset of answers
to each message before discarding it and attacking the next message. This is
the strongest possible attacker; an attacker which proceeds to guess less likely
answers or larger subsets can only have lower guessing efficiency. The imaginary
attacker with an infinite supply of messages will only succeed with probability
2−Hattack with one guess each, thus Hattack is an effective lower bound on the
workload of an attacker.

Due to our key-strengthening, the attacker must actually perform an 2s in-
vocations of H to check each guess. Thus, the effective attacker workload is
Hattack + s bits.

1 Despite its common use for the purpose, Shannon entropy is not a sound measure
of guessing difficulty. Min-entropy is an effective lower-bound on the difficulty of
guessing a sample drawn from a known probability distribution.
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4.3 Probability of successful decryption

We also consider the probability that Bob will be able to successfully decrypt the
message. We assume that for each answer ai, Bob has an associated probability of
correctly recalling it, denoted as ri. Although there are some known techniques to
increase ri, such as normalisation of answers to prevent mistakes due to spelling
or punctuation [2,3], there is little recourse if Bob has legitimately forgotten too
many answers. We assume that Bob will only supply answers once, he will not
perform his own meta-search through likely possible answers, as this is unlikely
to be acceptable from a usability standpoint.

Similar to the case for the attacker, Bob needs to remember some subset of
answers A′ ∈ A∗. The probability of doing so is:

psuccess =
∑

A′∈A∗
[
∏

aj∈Ai

rj ·
∏

ak /∈Ai

(1− rk)] (8)

4.4 Optimisation of parameters

The encryption software is free to choose the subsets A∗ which allow for success-
ful decryption given the user’s choices for Q, and estimates of the min-entropy
Hi
∞ recall probability ri for each question. It can optimise either for maximum

decryption probability given a required security parameter Hmin, or for maxi-
mum security given a required minimum decryption probability pmin. In either
case, we initialise our state as:

A∗ = {A}; Hattack =
∑
ai∈A

Hi; psuccess =
∏
aj∈A

rj (9)

This corresponds to requiring that every answer is provided correctly, and
gives maximal security and minimal decryption probability. We then add the
subset A′ /∈ A∗ for which Hattack, as defined in Equation 7, is maximal, which
becomes the new estimated strength of the entire encryption. After we add A′,
we update:

Hattack :=
∑

ai∈A′
Hi
∞; psuccess + =

∏
aj∈A′

rj ·
∏

ak /∈A′
(1− rk) (10)

Note that, as we add to A∗, Hattack is monotonically decreasing while psuccess
is monotonically increasing, building up to their correct values as defined in
Equations 7 and 8. The stopping conditions are obvious, either we continue
until the next subset A′ to add would result in Hattack < Hmin if we have a
minimum security requirement, or we continue until psuccess ≥ pmin if we have a
minimum decryption probability requirement.

We can further reduce storage requirements by omitting any answer subset
A′ which is a strict superset of another valid answer subset A′′, as the recipient
can always use the smaller set A′′ to decrypt if A′ would have been possible. We
call the reduced set of answer subsets Â∗.
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4.5 Example values

We consider an example scenario in which Alice provides 20 questions, each of
which has min-entropy H∞ = 4 bits and recall probability r = 0.9. Of course,
our system is designed to support different values for each question, but we
consider a simple example to calculate the resulting message size and security.
A reasonable choice is to enable decryption if at least 16 answers are guessed
correctly:

A∗ = {A′ ∈ A : |A′| ≥ 16} (11)

The total number of correctly decrypting sets is then:

|A∗| =
(

20

20

)
+

(
20

19

)
+

(
20

18

)
+

(
20

17

)
+

(
20

16

)
= 6, 196 (12)

As discussed in Section 4.4, we can discard many of these subsets which are
supersets of others, resulting in an optimal set of size:

|Â∗| =
(

20

16

)
= 4, 485 (13)

The probability of successful decryption, as defined in Equation 8, is:

psuccess =
∑

A′∈A∗
[
∏

aj∈Ai

rj ·
∏

ak /∈Ai

(1− rk)] =
∑

16≤i≤20

0.9i · 0.120−i = 0.957 (14)

The attacker’s workload, defined in Equation 7, is that of any set of 16
answers, which is:

Hattack =
∑

ai∈Aattack

Hi
∞ = 16 · 4 = 64 (15)

Assuming we desire 80 bits of security, we require each offset Oi to be 80
bits. Each offset represents a subset of at least 16 of the 20 answers, which we
can efficiently encode by listing the excluded items in a maximum of 20 bits (5
bits each for up to 4 excluded answers). Thus, we need to send a maximum of
4, 485 · 100 = 448, 500 bits to represent O, which is ≈ 55 kB.

Our attacker will have a maximal success probability of 2−64, so we can use
s = 16 to make her total workload equivalent to 280 invocations of the hash
function H.

Finally, even if our intended recipient must search every subset in A∗, this
will require a total of 6, 196 · 216 ≈ 228.1 invocations of H.

5 Sample experiment

The author conducted a small experiment to test the feasibility of the proposed
protocol. Questions were written for eight different people whom the author has
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known for an extended period of time. One hour was spent writing questions
and estimating their strength and probabilities for each recipient.2 The resulting
number of questions and message sizes are listed in Table 1.

Each recipient received 12–16 questions, and needed to answer between 5 and
12 of them in order to successfully decrypt. This variation was due to the varying
estimates of guessability between different recipients. For some it was easier to
craft difficult-to-guess questions and for others it was necessary to rely on a
larger number of relatively weak questions. This also led to a large variation in
message size from 1–70 kB, depending mostly on the number of sufficient subsets
for decryption which required sending additional offsets.

Relation |Q| Hmax psuccess |A∗| |Â∗| min(|Ai|) storage (kb)

ex-partner 15 76 0.724 189 128 12 1
sister 13 87 0.878 597 284 8 3
mother 12 88 0.937 660 312 7 3
brother 16 98 0.979 9352 2240 8 40
former roommate 13 93 0.974 9352 2240 5 40
partner 16 89 0.977 9819 2600 8 45
father 14 95 0.959 10032 2679 6 47
childhood friend 16 101 0.989 13696 3776 8 70

Table 1. Number of questions sent and total message overhead for each of the 8 study
participants, requiring a minimum estimated security of Hattack = 64 in each case.

Each recipient attempted to answer their own questions only once. Every
participant answered enough questions correctly to successfully decrypt, though
every recipient was incorrect on multiple questions. The totals are listed in Ta-
ble 2. Overall, 82 of 114 questions, or 72%, were answered correctly. By the
author’s estimates during the experiment, close to 85% of questions were ex-
pected to be answered correctly. Breaking down the caused of incorrect answers,
6% were due to spelling disagreement, and a further 7% were due to synonym re-
placement.3 16% of questions were legitimately forgotten or not known, close the
original estimate of success. This suggests a bias towards ignoring the possibility
of input mistakes when estimating the probability of a correct answer.

Each recipient also was encouraged to attempt to guess the answers to every
other recipients’ questions as many times as they were willing to. Many of the
recipients, being family members and long-term friends, knew each other well.
Thus there were a number of successful guesses, also listed in Table 2. A total
of 13 questions, over 10%, were successfully guessed by another participant in

2 The one-hour time limit seems to be a lower limit. It is surprisingly difficult to
remember and write good questions for use in this system.

3 For example, one recipient answered “Pt. Reyes” instead of “Drake’s Bay” which
are equivalent names for the same physical place.
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the study. Nearly all of these were either one of the author’s siblings guessing a
question intended for the other sibling, or one of the author’s parents guessing a
question intended for the other parent, demonstrating the difficulty of separating
these pairs of people. None of the recipients had enough questions guessed to
successfully decrypt, although in several cases enough questions were asked to
push Hattack below 40 bits (prior to key-strengthening).

recipient |Q| |A∗| successful answers guessed answers

ex-sig. other 15 12 12 0
sister 13 8 10 2
mother 12 7 8 3
brother 16 8 13 4
former roommate 13 5 10 1
sig. other 16 8 14 0
father 14 6 7 3
childhood friend 16 8 10 0

Table 2. Number of questions successfully answered by intended recipients, as well
as guessed correctly by any other recipient.

Overall, the experiment suggested that such a protocol is possible with rea-
sonable real-world parameters (one hour of time to create questions and less
than 100 kB of storage overhead). All messages were successfully decrypted with
only very rudimentary software making no effort to correct typos or spelling
mistakes. However, the experiment also demonstrated that accurately estimat-
ing the probability of recalling answers is very difficult, and that acquaintance
attacks by people who know the sender or recipient can be a significant problem.

6 Open questions

6.1 Sender authentication

So far we have only considered the question of confidentiality of the message
being sent to Alice, and this was all that was needed in prior systems which
only considered encryption to oneself. In our scenario, we may ask if there is any
secure way for Bob to ensure that a message he receives encrypted in our scheme
really came from Alice, as claimed. We conjecture that this problem is far more
difficult to completely solve. There does exist a degree of implicit authentication
in that Bob knows the sender is somebody who knew a significant amount of
personal information. In our proposal, we have included a MAC of all correct
answers in our system as a weak indication to the recipient that the sender did in
fact know all of the correct answers. We could consider adding some additional
personal information to the encryption which was not already used.

We feel that this provides little security against a malicious attempt to forge
a message from Alice. Presumably, such an attack could be constructed by, for
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example, breaking into Alice’s email address and reading old correspondence,
burgling Alice’s home, or dumpster diving to collect discarded material. This
sort of attack is far easier to pull off than a compromise of the confidentiality
of the system, because the attacker must only find enough information that
seems “personal enough” for Bob to assume it was Alice herself which sent the
message. To decrypt an intercepted message, the attacker must find specifically
the information chosen by Alice to encrypt, which is far more difficult.

6.2 Fuzzy matching

Another desirable trait is fuzzy matching of answers. That is, instead of requiring
that Bob answer some subset of questions exactly, we can allow him to answer
fewer questions exactly and be close on some questions. For example, if the
question is, “When is cousin Jeff’s birthday?”, Bob may guess April 12 when
the correct date is April 14. Intuitively, Bob has demonstrated some knowledge
of the correct answer while still being wrong. An ideal system would enable the
recipient to learn a varying amount of the pre-key based on closeness to a correct
answer. This may be useful in textual questions as well, if a name is misspelled
but still largely correct.

In our current system, this functionality is missing. The closest we can do is
normalise answers, say, by removing spaces and capitalisation, or more aggres-
sively by applying the Soundex algorithm to mask spelling errors. In the case
of numbers or dates, they can be rounded. Neither of these methods is ideal,
as they assist with guessing attacks, and may not be helpful in that two close
answers may still be rounded to different values. An open question is how to
design a system that will allow for fuzzy matching of answers.
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